Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2013_23_2_a9, author = {Dul\k{e}ba, I. and Opa{\l}ka, M.}, title = {A comparison of {Jacobian-based} methods of inverse kinematics for serial robot manipulators}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {373--382}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a9/} }
TY - JOUR AU - Dulęba, I. AU - Opałka, M. TI - A comparison of Jacobian-based methods of inverse kinematics for serial robot manipulators JO - International Journal of Applied Mathematics and Computer Science PY - 2013 SP - 373 EP - 382 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a9/ LA - en ID - IJAMCS_2013_23_2_a9 ER -
%0 Journal Article %A Dulęba, I. %A Opałka, M. %T A comparison of Jacobian-based methods of inverse kinematics for serial robot manipulators %J International Journal of Applied Mathematics and Computer Science %D 2013 %P 373-382 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a9/ %G en %F IJAMCS_2013_23_2_a9
Dulęba, I.; Opałka, M. A comparison of Jacobian-based methods of inverse kinematics for serial robot manipulators. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 2, pp. 373-382. http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a9/
[1] Ben-Isreal, A. and Cohen, D. (1966). On iterative computation of generalized inverses and associated projections, SIAM Journal on Numerical Analysis 3(3): 410–419.
[2] Ben-Isreal, A. and Greville, T. (2003). Generalized Inverses: Theory and Applications, CMS Books in Mathematics, 2nd Edn., Springer, New York, NY.
[3] Chiacchio, P. and Siciliano, B. (1989). A closed-loop Jacobian transpose scheme for solving the inverse kinematics of nonredundant and redundant wrists, Journal of Robotic Systems 6(5): 601–630.
[4] D’Souza, A., Vijaykumar, S. and Schaal, S. (2001). Learning inverse kinematics, International Conference on Intelligent Robots and Systems, Maui, HI, USA, pp. 298–303.
[5] Dulęba, I. and Jagodziński, J. (2011). Motion representations for the Lafferriere–Sussmann algorithm for nilpotent control systems, International Journal of Applied Mathematics and Computer Science 21(3): 525–534, DOI: 10.2478/v10006-011-0041-y.
[6] Dulęba, I. and Sasiadek, J. (2002). Modified Jacobian method of transversal passing through the smallest deficiency singularities for robot manipulators, Robotica 20(4): 405–415.
[7] Golub, G. and Van Loan, C. (1996). Matrix Computations, 3rd Edn., Johns Hopkins, Baltimore, MD.
[8] Horn, R. and Johnson, C. (1986). Matrix Analysis, Cambridge University Press, New York, NY.
[9] Hunek, W. and Latawiec, K.J. (2011). A study on new right/left inverses of nonsquare polynomial matrices, International Journal of Applied Mathematics and Computer Science 21(2): 331–348, DOI: 10.2478/v10006-011-0025-y.
[10] Lee, C. (1982). Robot arm kinematics, dynamics, and control, Computer 15(12): 62–80.
[11] Levenberg, K. (1944). A method for the solution of certain problems in least squares, Quarterly of Applied Mathematics 2: 164–168.
[12] Maciejewski, A. and Klein, C. (1989). The singular value decomposition: Computation and applications to robotics, International Journal of Robotics Research 8(6): 63–79.
[13] Marquardt, D. (1963). An algorithm for least-squares estimation of nonlinear parameters, SIAM Journal on Applied Mathematics 11(2): 431–441.
[14] Nakamura, Y. (1991). Advanced Robotics: Redundancy and Optimization, Addison Wesley, New York, NY.
[15] Nearchou, A. (1998). Solving the inverse kinematics problem of redundant robots operating in complex environments via a modified genetic algorithm, Mechanism and Machine Theory 33(3): 273–292.
[16] Tchoń, K. and Dulęba, I. (1993). On inverting singular kinematics and geodesic trajectory generation for robot manipulators, Journal of Intelligent and Robotic Systems 8(3): 325–359.
[17] Tchoń, K., Dulęba, I., Muszyński, R., Mazur, A. and Hossa, R. (2000). Manipulators and Mobile Robots: Models, Motion Planning, Control, PLJ, Warsaw, (in Polish).
[18] Tchoń, K., Karpińska, J. and Janiak, M. (2009). Approximation of Jacobian inverse kinematics algorithms, International Journal of Applied Mathematics and Computer Science 19(4): 519–531, DOI: 10.2478/v10006-009-0041-3.
[19] Tejomurtula, S. and Kak, S. (1999). Inverse kinematics in robotics using neural networks, Information Sciences 116(2–4): 147–164.