Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2013_23_2_a5, author = {Zhai, G. and Chen, N. and Gui, W.}, title = {Decentralized design of interconnected {H} infinity feedback control systems with quantized signals}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {317--325}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a5/} }
TY - JOUR AU - Zhai, G. AU - Chen, N. AU - Gui, W. TI - Decentralized design of interconnected H infinity feedback control systems with quantized signals JO - International Journal of Applied Mathematics and Computer Science PY - 2013 SP - 317 EP - 325 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a5/ LA - en ID - IJAMCS_2013_23_2_a5 ER -
%0 Journal Article %A Zhai, G. %A Chen, N. %A Gui, W. %T Decentralized design of interconnected H infinity feedback control systems with quantized signals %J International Journal of Applied Mathematics and Computer Science %D 2013 %P 317-325 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a5/ %G en %F IJAMCS_2013_23_2_a5
Zhai, G.; Chen, N.; Gui, W. Decentralized design of interconnected H infinity feedback control systems with quantized signals. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 2, pp. 317-325. http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a5/
[1] Brockett, R.W. and Liberzon, D. (2000). Quantized feedback stabilization of linear systems, IEEE Transactions on Automatic Control 45(7): 1279–1289.
[2] Bushnell, L.G. (2001). Special section on networks control, IEEE Control Systems Magazine 21(1): 22–99.
[3] Chen, N., Shen, X. and Gui, W. (2011a). Decentralized H infinity quantized dynamic output feedback control for uncertain interconnected networked systems, Proceedings of the 8th Asian Control Conference, Kaohsiung, Taiwan, pp. 131–136.
[4] Chen, W., Khan, A.Q., Abid, M. and Ding, S.X. (2011b). Integrated design of observer based fault detection for a class of uncertain nonlinear systems, International Journal of Applied Mathematics and Computer Science 21(3): 423–430, DOI: 10.2478/v10006-011-0031-0.
[5] Delchamps, D.F. (1990). Stabilizing a linear system with quantized state feedback, IEEE Transactions on Automatic Control 35(8): 916–924.
[6] Ikeda, M., Zhai, G. and Fujisaki, Y. (1996). Decentralized H infinity control for large-scale systems: A matrix inequality approach using a homotopy method, Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, Japan, pp. 1–6.
[7] Ishii, H. and Francis, B. (2002). Limited Data Rate in Control Systems with Networks, Springer, Berlin.
[8] Iwasaki, T., Skelton, R.E. and Grigoriadis, K.M. (1998). A Unified Algebraic Approach to Linear Control Design, Taylor Francis, London.
[9] Liberzon, D. (2000). Nonlinear stabilization by hybrid quantized feedback, Proceedings of the 3rd International Workshop on Hybrid Systems: Computation and Control, Pittsburgh, PA, USA, pp. 243–257.
[10] Liberzon, D. (2003). Hybrid feedback stabilization of systems with quantized signals, Automatica 39(9): 1543–1554.
[11] Ling, Q. and Lemmon, M.D. (2010). A necessary and sufficient feedback dropout condition to stabilize quantized linear control systems with bounded noise, IEEE Transactions on Automatic Control 55(11): 2590–2596.
[12] Morawski, M. and Zajączkowski, A.M. (2010). Approach to the design of robust networked control systems, International Journal of Applied Mathematics and Computer Science 20(4): 689–698, DOI: 10.2478/v10006-010-0052-0.
[13] Murao, S., Zhai, G., Ikeda, M. and Tamaoki, K. (2002). Decentralized H infinity controller design: An LMI approach, Proceedings of the 41st SICE Annual Conference, Osaka, Japan, pp. 2734–2739.
[14] Tatikonda, S. and Mitter, S. (2004). Control under communication constraints, IEEE Transactions on Automatic Control 49(7): 1056–1068.
[15] Zhai, G., Chen, N. and Gui, W. (2010). Quantizer design for interconnected feedback control systems, Journal of Control Theory and Applications 8(1): 93–98.
[16] Zhai, G., Ikeda, M. and Fujisaki, Y. (2001). Decentralized H infinity controller design: A matrix inequality approach using a homotopy method, Automatica 37(4): 565–572.
[17] Zhai, G., Matsumoto, Y., Chen, X. and Mi, Y. (2004). Hybrid stabilization of linear time-invariant systems with two quantizers, Proceedings of the 2004 IEEE International Symposium on Intelligent Control, Taipei, Taiwan, pp. 305–309.
[18] Zhai, G., Mi, Y., Imae, J. and Kobayashi, T. (2005). Design of H infinity feedback control systems with quantized signals, Preprints of the 16th IFAC World Congress, Prague, Czech Republic, Fr–M17–TO/1.