Decentralized design of interconnected H infinity feedback control systems with quantized signals
International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 2, pp. 317-325.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we consider the design of interconnected H infinity feedback control systems with quantized signals. We assume that a decentralized dynamic output feedback has been designed for an interconnected continuous-time LTI system so that the closed-loop system is stable and a desired H infinity disturbance attenuation level is achieved, and that the subsystem measurement outputs are quantized before they are passed to the local controllers. We propose a local-output-dependent strategy for updating the parameters of the quantizers, so that the overall closed-loop system is asymptotically stable and achieves the same H infinity disturbance attenuation level. Both the pre-designed controllers and the parameters of the quantizers are constructed in a decentralized manner, depending on local measurement outputs.
Keywords: interconnected systems, decentralized H infinity control, dynamic output feedback, quantizer, quantization, matrix inequality, LMI
Mots-clés : sprzężenie zwrotne dynamiczne, kwantyzer, kwantowanie, nierówność macierzowa, metoda LMI
@article{IJAMCS_2013_23_2_a5,
     author = {Zhai, G. and Chen, N. and Gui, W.},
     title = {Decentralized design of interconnected {H} infinity feedback control systems with quantized signals},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {317--325},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a5/}
}
TY  - JOUR
AU  - Zhai, G.
AU  - Chen, N.
AU  - Gui, W.
TI  - Decentralized design of interconnected H infinity feedback control systems with quantized signals
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2013
SP  - 317
EP  - 325
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a5/
LA  - en
ID  - IJAMCS_2013_23_2_a5
ER  - 
%0 Journal Article
%A Zhai, G.
%A Chen, N.
%A Gui, W.
%T Decentralized design of interconnected H infinity feedback control systems with quantized signals
%J International Journal of Applied Mathematics and Computer Science
%D 2013
%P 317-325
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a5/
%G en
%F IJAMCS_2013_23_2_a5
Zhai, G.; Chen, N.; Gui, W. Decentralized design of interconnected H infinity feedback control systems with quantized signals. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 2, pp. 317-325. http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a5/

[1] Brockett, R.W. and Liberzon, D. (2000). Quantized feedback stabilization of linear systems, IEEE Transactions on Automatic Control 45(7): 1279–1289.

[2] Bushnell, L.G. (2001). Special section on networks control, IEEE Control Systems Magazine 21(1): 22–99.

[3] Chen, N., Shen, X. and Gui, W. (2011a). Decentralized H infinity quantized dynamic output feedback control for uncertain interconnected networked systems, Proceedings of the 8th Asian Control Conference, Kaohsiung, Taiwan, pp. 131–136.

[4] Chen, W., Khan, A.Q., Abid, M. and Ding, S.X. (2011b). Integrated design of observer based fault detection for a class of uncertain nonlinear systems, International Journal of Applied Mathematics and Computer Science 21(3): 423–430, DOI: 10.2478/v10006-011-0031-0.

[5] Delchamps, D.F. (1990). Stabilizing a linear system with quantized state feedback, IEEE Transactions on Automatic Control 35(8): 916–924.

[6] Ikeda, M., Zhai, G. and Fujisaki, Y. (1996). Decentralized H infinity control for large-scale systems: A matrix inequality approach using a homotopy method, Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, Japan, pp. 1–6.

[7] Ishii, H. and Francis, B. (2002). Limited Data Rate in Control Systems with Networks, Springer, Berlin.

[8] Iwasaki, T., Skelton, R.E. and Grigoriadis, K.M. (1998). A Unified Algebraic Approach to Linear Control Design, Taylor Francis, London.

[9] Liberzon, D. (2000). Nonlinear stabilization by hybrid quantized feedback, Proceedings of the 3rd International Workshop on Hybrid Systems: Computation and Control, Pittsburgh, PA, USA, pp. 243–257.

[10] Liberzon, D. (2003). Hybrid feedback stabilization of systems with quantized signals, Automatica 39(9): 1543–1554.

[11] Ling, Q. and Lemmon, M.D. (2010). A necessary and sufficient feedback dropout condition to stabilize quantized linear control systems with bounded noise, IEEE Transactions on Automatic Control 55(11): 2590–2596.

[12] Morawski, M. and Zajączkowski, A.M. (2010). Approach to the design of robust networked control systems, International Journal of Applied Mathematics and Computer Science 20(4): 689–698, DOI: 10.2478/v10006-010-0052-0.

[13] Murao, S., Zhai, G., Ikeda, M. and Tamaoki, K. (2002). Decentralized H infinity controller design: An LMI approach, Proceedings of the 41st SICE Annual Conference, Osaka, Japan, pp. 2734–2739.

[14] Tatikonda, S. and Mitter, S. (2004). Control under communication constraints, IEEE Transactions on Automatic Control 49(7): 1056–1068.

[15] Zhai, G., Chen, N. and Gui, W. (2010). Quantizer design for interconnected feedback control systems, Journal of Control Theory and Applications 8(1): 93–98.

[16] Zhai, G., Ikeda, M. and Fujisaki, Y. (2001). Decentralized H infinity controller design: A matrix inequality approach using a homotopy method, Automatica 37(4): 565–572.

[17] Zhai, G., Matsumoto, Y., Chen, X. and Mi, Y. (2004). Hybrid stabilization of linear time-invariant systems with two quantizers, Proceedings of the 2004 IEEE International Symposium on Intelligent Control, Taipei, Taiwan, pp. 305–309.

[18] Zhai, G., Mi, Y., Imae, J. and Kobayashi, T. (2005). Design of H infinity feedback control systems with quantized signals, Preprints of the 16th IFAC World Congress, Prague, Czech Republic, Fr–M17–TO/1.