Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2013_23_1_a1, author = {Akbari, H.}, title = {Fast convergence of the {Coiflet-Galerkin} method for general elliptic {BVPs}}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {17--27}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_1_a1/} }
TY - JOUR AU - Akbari, H. TI - Fast convergence of the Coiflet-Galerkin method for general elliptic BVPs JO - International Journal of Applied Mathematics and Computer Science PY - 2013 SP - 17 EP - 27 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_1_a1/ LA - en ID - IJAMCS_2013_23_1_a1 ER -
%0 Journal Article %A Akbari, H. %T Fast convergence of the Coiflet-Galerkin method for general elliptic BVPs %J International Journal of Applied Mathematics and Computer Science %D 2013 %P 17-27 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_1_a1/ %G en %F IJAMCS_2013_23_1_a1
Akbari, H. Fast convergence of the Coiflet-Galerkin method for general elliptic BVPs. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 1, pp. 17-27. http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_1_a1/
[1] Akbari, H. and Kerayechian, A. (2012). Coiflet-Galerkin method for solving second order BVPs with variable coefficients in three dimensions, Numerical Algorithms 61(4): 681–698, DOI: 10.1007/s11075-012-9558-x.
[2] Baccou, J. and Liandrat, J. (2006). Definition and analysis of a wavelet fictitious domain solver for the 2-D heat equation on a general domain, Mathematical Models and Methods in Applied Sciences 16(6): 819–845.
[3] Bandrowski, B., Karczewska, A. and Rozmej, P. (2010). Numerical solutions to integral equations equivalent to differential equations with fractional time, International Journal of Applied Mathematics and Computer Science 20(2): 261–269, DOI: 10.2478/v10006-010-0019-1.
[4] Cerna, D., Finek, V. and Najzar, K. (2008). On the exact values of coefficients of Coiflets, Central European Journal of Mathematics 6(1): 159–169.
[5] Daubechies, I. (1992). Ten Lectures on Wavelets, SIAM, Philadelphia, PA.
[6] El-Gamel, M. (2006). A wavelet-Galerkin method for a singularly perturbed convection-dominated diffusion equation, Applied Mathematics and Computation 181(2): 1635–1644.
[7] Ern, A. and Guermond, J. (2004). Theory and Practice of Finite Elements, Springer, New York, NY.
[8] Glowinski, R., Pan, T. W. and Periaux, J. (2006). Numerical simulation of a multi-store separation phenomenon: A fictitious domain approach, Computer Methods in Applied Mechanics and Engineering 195(41): 5566–5581.
[9] Hansen P. C. (1994). Regularization Tools: A Matlab package for analysis and solution of discrete Ill-posed problems, Numerical Algorithms 6: 1–35, http://www.mathworks.com/matlabcentral/fileexchange/52.
[10] Hashish, H., Behiry, S. H., Elsaid, A. (2009). Solving the 2-D heat equations using wavelet-Galerkin method with variable time step, Applied Mathematics and Computation 213(1): 209–215.
[11] Jensen, T. K. and Hansen, P. C. (2007). Iterative regularization with minimum-residual methods, BIT Numerical Mathematics 47(1): 103–120.
[12] Latto, A., Resnikoff, H. and Tenenbaum, E. (1992). The evaluation of connection coefficients of compactly supported wavele, Proceedings of the Workshop on Wavelets and Turbulence, Princeton, NJ, USA, pp. 76–89.
[13] Lin, E. and Zhou, X. (2001). Connection coefficients on an interval and wavelet solution of Burgers equation, Journal of Computational and Applied Mathematics 135(1): 63–78.
[14] Lin, E.and Zhou, X. (1997). Coiflet interpolation and approximate solutions of partial differential equations, Numerical Methods for Partial Differential Equations 13(4): 303–320.
[15] Nowak, Ł. D., Pasławska-Południak, M. and Twardowska, K. (2010). On the convergence of the wavelet-Galerkin method for nonlinear filtering, International Journal of Applied Mathematics and Computer Science 20(1): 93–108, DOI: 10.2478/v10006-010-0007-5.
[16] Reddy, J. (2006). An Introduction to the Finite Element Method, 3rd Edn., McGraw Hill, New York, NY.
[17] Resnikoff, H. and Wells, R. O. Jr (1998). Wavelet Analysis: The Scalable Structure of Information, Springer-Verlag, New York, NY.
[18] Romine, C. H. and Peyton, B. W. (1997). Computing connection coefficients of compactly supported wavelets on bounded intervals, Technical Report ORNL/TM-13413, Computer Science and Mathematical Division, Mathematical Sciences Section, Oak Ridge National Laboratory, Oak Ridge, TN, http://citeseer.ist.psu.edu/romine97computing.html.
[19] Saad, Y. (1996). Iterative Methods for Sparse Linear Systems, PWS Publishing Company.
[20] Saberi-Nadjafi, J., Mehrabinezhad, M. and Akbari, H. (2012). Solving Volterra integral equations of the second kind by wavelet-Galerkin scheme, Computers and Mathematics with Application 63(11): 1536–1547, DOI: 10.1016/j.camwa.2012.03.043.
[21] Vampa, V., Martin, M. and Serrano, E. (2010). A hybrid method using wavelets for the numerical solution of boundary value problems on the interval, Applied Mathematics and Computation 217(7): 3355–3367.