Normalized finite fractional differences: Computational and accuracy breakthroughs
International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 4, pp. 907-919.

Voir la notice de l'article provenant de la source Library of Science

This paper presents a series of new results in finite and infinite-memory modeling of discrete-time fractional differences. The introduced normalized finite fractional difference is shown to properly approximate its fractional difference original, in particular in terms of the steady-state properties. A stability analysis is also presented and a recursive computation algorithm is offered for finite fractional differences. A thorough analysis of computational and accuracy aspects is culminated with the introduction of a perfect finite fractional difference and, in particular, a powerful adaptive finite fractional difference, whose excellent performance is illustrated in simulation examples.
Keywords: fractional difference, Grünwald-Letnikov difference, stability analysis, recursive computation, adaptive systems
Mots-clés : różnica ułamkowa, różnica Grünwalda-Letnikowa, analiza stabilności, system adaptacyjny
@article{IJAMCS_2012_22_4_a9,
     author = {Stanis{\l}awski, R. and Latawiec, K. J.},
     title = {Normalized finite fractional differences: {Computational} and accuracy breakthroughs},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {907--919},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_4_a9/}
}
TY  - JOUR
AU  - Stanisławski, R.
AU  - Latawiec, K. J.
TI  - Normalized finite fractional differences: Computational and accuracy breakthroughs
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2012
SP  - 907
EP  - 919
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_4_a9/
LA  - en
ID  - IJAMCS_2012_22_4_a9
ER  - 
%0 Journal Article
%A Stanisławski, R.
%A Latawiec, K. J.
%T Normalized finite fractional differences: Computational and accuracy breakthroughs
%J International Journal of Applied Mathematics and Computer Science
%D 2012
%P 907-919
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_4_a9/
%G en
%F IJAMCS_2012_22_4_a9
Stanisławski, R.; Latawiec, K. J. Normalized finite fractional differences: Computational and accuracy breakthroughs. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 4, pp. 907-919. http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_4_a9/

[1] Bandrowski, B., Karczewska, A. and Rozmej, P. (2010). Numerical solutions to integral equations equivalent to differential equations with fractional time, International Journal of Applied Mathematics and Computer Science 20(2): 261-269, DOI: 10.2478/v10006-010-0019-1.

[2] Barbosa, R. and Machado, J. (2006). Implementation of discrete-time fractional-order controllers based on LS approximations, Acta Polytechnica Hungarica 3(4): 5-22.

[3] Busłowicz, M. and Kaczorek, T. (2009). Simple conditions for practical stability of positive fractional discrete-time linear systems, International Journal of Applied Mathematics and Computer Science 19(2): 263-269, DOI: 10.2478/v10006-009-0022-6.

[4] Chen, Y., Vinagre, B. and Podlubny, I. (2003). A new discretization method for fractional order differentiators via continued fraction expansion, Proceedings of DETC'2003, ASME Design Engineering Technical Conferences, Chicago, IL, USA, Vol. 340, pp. 349-362.

[5] Debeljković, D.L., Aleksendrić, M., Yi-Yong, N. and Zhang, Q. (2002). Lyapunov and nonlyapunov stability of linear discrete time delay systems, Facta Universitatis Mechanical Engineering 14(9-10): 1147-1160.

[6] Delavari, H., Ranjbar, A., Ghaderi, R. and Momani, S. (2010). Fractional order control of a coupled tank, Nonlinear Dynamics 61(3): 383-397.

[7] Dzieliński, A. and Sierociuk, D. (2008). Stability of discrete fractional order state-space systems, Journal of Vibration and Control 14(9-10): 1543-1556.

[8] Guermah, S., Djennoune, S. and Bettayeb, M. (2010). A new approach for stability analysis of linear discrete-time fractional-order systems, in D. Baleanu, Z.B. Güvenç and J.A.T. Machado (Eds.), New Trends in Nanotechnology and Fractional Calculus Applications, Springer, Dordrecht, pp. 151-162.

[9] Hunek,W. P. and Latawiec, K. J. (2011). A study on new right/left inverses of nonsquare polynomial matrices, International Journal of Applied Mathematics and Computer Science 21(2): 331-348, DOI: 10.2478/v10006-011-0025-y.

[10] Kaczorek, T. (2008). Practical stability of positive fractional discrete-time linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(4): 313-317.

[11] Latawiec, K. J. (2004). The Power of Inverse Systems in Linear and Nonlinear Modeling and Control, Opole University of Technology Press, Opole.

[12] Liavas, A. P. and Regalia, P. (1999). On the numerical stability and accuracy of the conventional recursive least squares algorithm, IEEE Transactions on Signal Processing 47(1): 88-96.

[13] Lubich, C. H. (1986). Discretized fractional calculus, SIAM Journal on Mathematical Analysis 17(3): 704-719.

[14] Maione, G. (2006). A digital, noninteger order, differentiator using laguerre orthogonal sequences, International Journal of Intelligent Control and Systems 11(2): 77-81.

[15] Miller, K. and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations, Willey, New York, NY.

[16] Momani, S. and Odibat, Z. (2007). Numerical approach to differential equations of fractional order, Journal of Computational and Applied Mathematics 207(1): 96 - 110.

[17] Monje, C., Chen, Y., Vinagre, B., Xue, D. and Feliu, V. (2010). Fractional-order Systems and Controls, Springer-Verlag, London.

[18] Oldham, K. and Spanier, J. (1974). The Fractional Calculus, Academic Press, Orlando, FL.

[19] Ortigueira, M. D. (2000). Introduction to fractional linear systems, II: Discrete-time case, IEE Proceedings on Vision, Image and Signal Processing 147(1): 71-78.

[20] Ostalczyk, P. (2000). The non-integer difference of the discrete-time function and its application to the control system synthesis, International Journal of Systems Science 31(12): 1551-1561.

[21] Ostalczyk, P. (2010). Stability analysis of a discrete-time system with a variable-fractional-order controller, Bulletin of the Polish Academy of Sciences: Technical Sciences 58(4): 613-619.

[22] Petráš, I., Dorčák, L. and Koštial, I. (2000). The modeling and analysis of fractional-order control systems in discrete domain, Proceedings of the International Carpatian Control Conference, High Tatras, Slovak Republic, pp. 257-260.

[23] Petráš, I. and Vinagre, B. (2002). Practical application of digital fractional-order controller to temperature control, Acta Montanistica Slovaca 7(2): 131-137.

[24] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, Orlando, FL.

[25] Riu, D., Retiére, N. and Ivanes, M. (2001). Turbine generator modeling by non-integer order systems, IEEE International Conference on Electric Machines and Drives, Cambridge, MA, USA, pp. 185-187.

[26] Saeedi, H., Mollahasani, N., Moghadam, M. M. and Chuev, G. N. (2011). An operational Haar wavelet method for solving fractional Volterra integral equations, International Journal of Applied Mathematics and Computer Science 21(3): 535-547, DOI: 10.2478/v10006-011-0042-x.

[27] Sierociuk, D. and Dzieliński, A. (2006). Fractional Kalman filter algorithm for states, parameters and order of fractional system estimation, International Journal of Applied Mathematics and Computer Science 16(1): 129-140.

[28] Stanisławski, R. (2009). Identification of open-loop stable linear systems using fractional orthonormal basis functions, Proceedings of the 14th International Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 935-985.

[29] Stanisławski, R. and Latawiec, K. J. (2010). Modeling of open-loop stable linear systems using a combination of a finite fractional derivative and orthonormal basis functions, Proceedings of the 15th International Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 411-414.

[30] Stanisławski, R. and Latawiec, K. J. (2011). Finite approximations of a discrete-time fractional derivative, 16th International Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 142-145.

[31] Stojanovic, S. B. and Debeljkovic, D. L. (2010). Simple stability conditions of linear discrete time systems with multiple delay, Serbian Journal of Electrical Engineering 7(1): 69-79.

[32] Sun, H., Chen, W. and Chen, Y. (2009). Variable-order fractional differential operators in anomalous diffusion modeling, Physica A: Statistical Mechanics and Its Applications 388(21): 4586-4592.

[33] Tseng, C., Pei, S. and Hsia, S. (2000). Computation of fractional derivatives using Fourier transform and digital FIR diferentiator, Signal Processing 80(1): 151-159.

[34] Valério, D. and Sá da Costa, J. (2011). Variable-order fractional derivatives and their numerical approximations, Signal Processing 91(3): 470-483.

[35] Verhaegen, M. H. (1989). Round-off error propagation in four generally-applicable, recursive, least-squares estimation schemes, Automatica 25(3): 437-444.

[36] Vinagre, B., Podlubny, I., Hernandez, A. and Feliu, V. (2000). Some approximations of fractional order operators used in control theory and applications, Fractional Calculus Applied Analysis 3(3): 945-950.

[37] Zaborowsky, V. and Meylaov, R. (2001). Informational network traffic model based on fractional calculus, Proceedings of the International Conference on Info-tech and Info-net, ICII 2001, Beijing, China, Vol. 1, pp. 58-63.