Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2012_22_4_a16, author = {Sz{\l}apczy\'nski, R. and Sz{\l}apczy\'nska, J.}, title = {Customized crossover in evolutionary sets of safe ship trajectories}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {999--1009}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_4_a16/} }
TY - JOUR AU - Szłapczyński, R. AU - Szłapczyńska, J. TI - Customized crossover in evolutionary sets of safe ship trajectories JO - International Journal of Applied Mathematics and Computer Science PY - 2012 SP - 999 EP - 1009 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_4_a16/ LA - en ID - IJAMCS_2012_22_4_a16 ER -
%0 Journal Article %A Szłapczyński, R. %A Szłapczyńska, J. %T Customized crossover in evolutionary sets of safe ship trajectories %J International Journal of Applied Mathematics and Computer Science %D 2012 %P 999-1009 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_4_a16/ %G en %F IJAMCS_2012_22_4_a16
Szłapczyński, R.; Szłapczyńska, J. Customized crossover in evolutionary sets of safe ship trajectories. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 4, pp. 999-1009. http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_4_a16/
[1] Alba, E., Luna, F. and Nebro, A. J. (2004). Advances in parallel heterogeneous genetic algorithms for continuous optimisation, International Journal of Applied Mathematics and Computer Science 14(3): 317-333.
[2] Belter, D. and Skrzypczyński, P. (2010). A biologically inspired approach to feasible gait learning for a hexapod robot, International Journal of Applied Mathematics and Computer Science 20(1): 69-84, DOI: 10.2478/v10006-010-0005-7.
[3] Beyera, H., Schwefela, H. and Wegenerb, I. (2002). How to analyse evolutionary algorithms, Theoretical Computer Science 287(1): 101-130.
[4] Cockroft, A. and Lameijer, J. (1993). A Guide to Collision Avoidance Rules, Butterworth-Heinemann Ltd., Oxford.
[5] Eiben, A. and Schoenauer, M. (2002). Evolutionary computing, Information Processing Letters 82(1): 1-6.
[6] Jóźwiak, L. and Postula, A. (2002). Genetic engineering versus natural evolution: Genetic algorithms with deterministic operators, Journal of Systems Architecture 48(1-3): 99-112.
[7] Julstrom, B. A. (2004). Codings and operators in two genetic algorithms for the leaf-constrained minimum spanning tree problem, International Journal of Applied Mathematics and Computer Science 14(3): 385-396.
[8] Kowalczuk, Z. and Białaszewski, T. (2006). Niching mechanisms in evolutionary computations, International Journal of Applied Mathematics and Computer Science 16(1): 59-84.
[9] Krawiec, K., Jaskowski, W. and Szubert, M. (2011). Evolving small-board Go players using coevolutionary temporal difference learning with archives, International Journal of Applied Mathematics and Computer Science 21(4): 717-731, DOI: 10.2478/v10006-011-0057-3.
[10] Mesghouni, K., Hammadi, S. and Borne, P. (2004). Evolutionary algorithms for job-shop scheduling, International Journal of Applied Mathematics and Computer Science 14(1): 91-103.
[11] Michalewicz, Z. and Fogel, D. (2004). How to Solve It: Modern Heuristics, Springer-Verlag, Berlin.
[12] Miquélez, T., Bengoetxea, E. and Larrañaga, P. (2004). Evolutionary computation based on Bayesian classifiers, International Journal of Applied Mathematics and Computer Science 14(3): 335-349.
[13] Pradhan, S., Parhi, D., Panda, A. and Behera, R. (2006). Potential field method to navigate several mobile robots, Applied Intelligence 25(1): 321-333.
[14] Śmierzchalski, R. and Michalewicz, Z. (2000). Modeling of a ship trajectory in collision situations at sea by evolutionary algorithm, IEEE Transactions on Evolutionary Computation 4(3): 227-241.
[15] Styrcz, A., Mrozek, J. and Mazur, G. (2011). A neural-network controlled dynamic evolutionary scheme for global molecular geometry optimization, International Journal of Applied Mathematics and Computer Science 21(3): 559-566, DOI: 10.2478/v10006-011-0044-8.
[16] Szłapczyńska, J. (2012). Multicriteria weather routing algorithm (MEWRA) applied to marine weather forecast and analysis tool-NaviWeather by NavSimTM, European Navigational Conference (ENC), Gdynia, Poland, (submitted).
[17] Szłapczyński, R. (2006). A unified measure of collision risk derived from the concept of a ship domain, The Journal of Navigation 59(3): 477-490.
[18] Szłapczyński, R. (2011). Evolutionary sets of safe ship trajectories: A new approach to collision avoidance, The Journal of Navigation 64(1): 169-181.
[19] Szłapczyński, R. and Szłapczyńska, J. (2011). Evolutionary sets of safe ship trajectories: Problem dedicated operators, in P. Jędrzejowicz, N. T. Nguyen and K. Hoang (Eds.), Computational Collective Intelligence: Technologies and Applications, Part II, Lecture Notes in Artificial Intelligence, Vol. 6923, Springer-Verlag, Berlin/Heidelberg, pp. 231-240.
[20] Troć, M. and Unold, O. (2010). Self-adaptation of parameters in a learning classifier system ensemble machine, International Journal of Applied Mathematics and Computer Science 20(1): 157-174, DOI: 10.2478/v10006-010-0012-8.
[21] Tsou, M. C. and Hsueh, C. K. (2010). The study of ship collision avoidance route planning by ant colony algorithm, Journal of Marine Science and Technology 18(5): 746-756.
[22] Tsou, M. C., Kao, S. L. and Su, C. M. (2010). Decision support from genetic algorithms for ship collision avoidance route planning and alerts, The Journal of Navigation 63(1): 167-182.
[23] Xue, Y., Lee, B. and Han, D. (2009). Automatic collision avoidance of ships, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 223(1): 33-46.
[24] Zeng, X. (2003). Evolution of the safe path for ship navigation, Applied Artificial Intelligence 17(2): 87-104.