Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2012_22_2_a7, author = {Balasubramaniam, P. and Lakshmanan, S. and Rakkiyappan, R.}, title = {LMI optimization problem of delay-dependent robust stability criteria for stochastic systems with polytopic and linear fractional uncertainties}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {339--351}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a7/} }
TY - JOUR AU - Balasubramaniam, P. AU - Lakshmanan, S. AU - Rakkiyappan, R. TI - LMI optimization problem of delay-dependent robust stability criteria for stochastic systems with polytopic and linear fractional uncertainties JO - International Journal of Applied Mathematics and Computer Science PY - 2012 SP - 339 EP - 351 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a7/ LA - en ID - IJAMCS_2012_22_2_a7 ER -
%0 Journal Article %A Balasubramaniam, P. %A Lakshmanan, S. %A Rakkiyappan, R. %T LMI optimization problem of delay-dependent robust stability criteria for stochastic systems with polytopic and linear fractional uncertainties %J International Journal of Applied Mathematics and Computer Science %D 2012 %P 339-351 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a7/ %G en %F IJAMCS_2012_22_2_a7
Balasubramaniam, P.; Lakshmanan, S.; Rakkiyappan, R. LMI optimization problem of delay-dependent robust stability criteria for stochastic systems with polytopic and linear fractional uncertainties. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 2, pp. 339-351. http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a7/
[1] Balasubramaniam, P., Lakshmanan, S. and Rakkiyappan, R. (2009). Delay-interval dependent robust stability criteria for stochastic neural networks with linear fractional uncertainties, Neurocomputing 72(16-18): 3675-3682.
[2] Balasubramaniam, P. and Lakshmanan, S. (2011). Delay-interval dependent robust stability criteria for neutral stochastic neural networks with polytopic and linear fractional uncertainties, International Journal of Computer Mathematics 88(10): 2001-2015.
[3] Boyd, S., El Ghaouli, L., Feron, E. and Balakrishnan, V. (1994). Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA.
[4] Chen, W. Y. (2002). Some new results on the asymptotic stability of uncertain systems with time-varying delays, International Journal of Systems Science 33(11): 917-21.
[5] Chen, W. H., Guan, Z. H. and Lu, X. M. (2004). Delay-dependent robust stabilization and H-infinity control of uncertain stochastic systems with time-varying delay, IMA Journal of Mathematical Control Information 21(3): 345-58.
[6] Chen, W. H., Guan, Z. H. and Lu, X. M. (2005). Delay-dependent exponential stability of uncertain stochastic systems with multiple delays: An LMI approach, Systems Letters 54(6): 547-555.
[7] Chesi, G., Garulli, A., Tesi, A. and Vicino, A. (2007). Robust stability of time-varying polytopic systems via parameter dependent homogeneous Lyapunov functions, Automatica 43(2): 309-316.
[8] Geromel, J. C. and Colaneri, P. (2006). Robust stability of time varying polytopic systems, Systems Control Letters 55(1): 81-85.
[9] Gu, K., Kharitonov, V. L. and Chen, J. (2003). Stability of Time-delay Systems, Birkhauser, Boston, MA.
[10] Gu, K. (2000). An integral inequality in the stability problem of time-delay systems, Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, pp. 2805-2810.
[11] Hale, J. K. and Verduyn Lunel, S. M. (1993). Introduction to Functional Differential Equations, Springer, New York, NY.
[12] He, Y., Wang, Q.-G. and Lin, C. (2006). An improved H-infinity filter design for systems with time-varying interval delay, IEEE Transactions on Circuits and Systems II: Express Briefs 53(11): 1235-1239.
[13] He, Y., Wu, M., She, J. H. and Liu, G. P. (2004). Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type uncertainties, IEEE Transactions on Automatic Control 49(5): 828-832.
[14] He, Y., Zhang, Y., Wu, M. and She, J.-H. (2010). Improved exponential stability for stochastic Markovian jump systems with nonlinearity and time-varying delay, International Journal of Robust and Nonlinear Control 20(1): 16- 26.
[15] Huang, Y. and Zhou, K. (2000). Robust stability of uncertain time-delay systems, IEEE Transactions on Automatic Control 45(11): 2169-2173.
[16] Ivanesu, D., Dion, J., Dugard, L. and Niculiscu, S. I. (2000). Dynamical compensation for time-delay systems: An LMI approach, International Journal of Robust and Nonlinear Control 10(8): 611-628.
[17] Jiang, X. and Han, Q.-L. (2008). New stability for linear systems with interval time-varying delay, Automatica 44(10): 2680-2685.
[18] Jiang, X. and Han, Q.-L. (2006). Delay-dependent robust stability for uncertain linear systems with interval time-varying delay, Automatica 42(6): 1059-1065.
[19] Kolmanoskii, V. B. and Myshkis, A. D. (1992). Applied Theory of Functional Differential Equations, Kluwer Academic Publishers, Dordrecht.
[20] Kwon, O. M. and Park, J. H. (2008). Exponential stability for time-delay systems with interval time-varying delays and nonlinear perturbations, Journal of Optimization Theory and Applications 139(2): 277-293.
[21] Kwon, O. M., Lee, S. M. and Park, J. H. (2010). Improved delay-dependent exponential stability for uncertain stochastic neural networks with time-varying delays, Physics Letters A 374(10): 1232-1241.
[22] Kim, J. H. (2001). Delay and its time-derivative dependent robust stability of time-delayed linear systems with uncertainty, IEEE Transactions on Automatic Control 46(5): 789-792.
[23] Liu, X. W. and Zhang, H. B. (2005). New stability criterion of uncertain systems with time-varying delay, Chaos, Solitons, Fractals 26(5): 1343-1348.
[24] Li, H., Chen, B., Zhou, Q. and Lin, C. (2008). Delay-dependent robust stability for stochastic time-delay systems with polytopic uncertainties, International Journal of Robust and Nonlinear Control 18(15): 1482-1492.
[25] Li, T., Guo, L. and Sun, C. (2007). Robust stability for neural networks with time-varying delays and linear fractional uncertainties, Neurocomputing 71(1-3): 421-427.
[26] Liu, P.-L. (2005). On the stability of neutral-type uncertain systems with multiple time delay, International Journal of Applied Mathematics and Computer Science 15(1):221-229.
[27] Mahmoud, M. S. and Al-Muthairi, N. F. (1994). Quadratic stabilization of continuous time systems with state delay and norm-bounded time-varying uncertainties, IEEE Transactions on Automatic Control 39(10): 2135-2139.
[28] Miyamura, A. and Aihara, K. (2004). Delay-depedent robust stability of uncertain delayed stochastic systems: An LMI-based, Proceedings of the 5th Asian Control Conference, Grand Hyatt-Melbourne, Australia, pp. 449-55.
[29] Ramos, D. C. W. and Peres, P. L. D. (2001). A less conservative LMI condition for the robust stability of discrete-time uncertain systems, Systems Control Letters 43(5): 371-378.
[30] Shi, P. and Boukas, E. K. (1997). H-infinity control for Markovian jumping linear systems with parametric uncertainty, Journal of Optimization Theory and Applications 95(1): 75-99.
[31] Tian, E., Yue, D. and Gu, Z. (2010). Robust H-infinity control for nonlinear systems over network: A piecewise analysis method, Fuzzy Sets and Systems 161(21): 2731-2745.
[32] Xia, Y. and Jia, Y. (2003). Roubst control of state delayed systems with polytopic type uncertainties via parameter-dependent Lyapunov functionals, Systems Control Letters 50(3):183-193.
[33] Xia, Y. and Jia, Y. (2002). Robust stability functionals of state delayed systems with polytopic type uncertainties via parameter-dependent Lyapunov functions, International Journal of Control 75(16-17): 1427-1434.
[34] Xu, S., Lam, J., Zou, Y., Zhong, N., Gao, H. and Wang, C. (2004). Robust stabilization for stochastic time-delay systems with polytopic uncertainties, International Conference on Control, Automation, Robotics and Vision, Kunming, China, pp. 1747-1750.
[35] Xue, X. and Qiu, D. (2000). Robust H-infinity-compensator design for time-delay systems with norm-bounded time-varying uncertainties, IEEE Transactions on Automatic Control 45(7): 1363-1369.
[36] Yue, D., Peng, C. and Tang, G. Y. (2006). Guaranteed cost control of linear systems over networks with state and input quantisations, IEE Proceedings of Control Theory and Applications 153(6): 658-664.
[37] Yan, H. C., Huang, X. H., Zhang, H. and Wang, M. (2009). Delay-dependent robust stability criteria of uncertain stochastic systems with time-varying delay, Chaos, Solitons, Fractals 40(4): 1668-1679.
[38] Yue, D. and Han, Q. L. (2005). Delay-dependent exponential stability of stochastic systems with time-varying delay, nonlinearity and Markovian switching, IEEE Transactions on Automatic Control 50(2): 217-222.
[39] Zhang, Y., He, Y. and Wu, M. (2009). Delay-dependent robust stability for uncertain stochastic systems with interval time-varying delay, Acta Automatica Sinica 35(5): 577-582.
[40] Zhang, Y., He, Y. and Wu, M. (2008). Improved delay-dependent robust stability for uncertain stochastic systems with time-varying delay, Proceedings of the 27th Chinese Control Conference, Kunming, Yunnan, China, pp. 764-768.
[41] Zhou, S., Li, T., Shao, H. and Zheng, W. X. (2006). Output feedback H-infinity control for uncertain discrete-time hyperbolic fuzzy sysems, Engineering Applications of Artificial Intelligence 19(5): 487-499.