Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2012_22_2_a14, author = {St\k{e}pie\'n, J. and Pola\'nski, A. and Wojciechowski, K.}, title = {A general on-the-fly algorithm for modifying the kinematic tree hierarchy}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {423--435}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a14/} }
TY - JOUR AU - Stępień, J. AU - Polański, A. AU - Wojciechowski, K. TI - A general on-the-fly algorithm for modifying the kinematic tree hierarchy JO - International Journal of Applied Mathematics and Computer Science PY - 2012 SP - 423 EP - 435 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a14/ LA - en ID - IJAMCS_2012_22_2_a14 ER -
%0 Journal Article %A Stępień, J. %A Polański, A. %A Wojciechowski, K. %T A general on-the-fly algorithm for modifying the kinematic tree hierarchy %J International Journal of Applied Mathematics and Computer Science %D 2012 %P 423-435 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a14/ %G en %F IJAMCS_2012_22_2_a14
Stępień, J.; Polański, A.; Wojciechowski, K. A general on-the-fly algorithm for modifying the kinematic tree hierarchy. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 2, pp. 423-435. http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a14/
[1] Baraff, D. (1996). Linear-time dynamics using Lagrange multipliers, SIGGRAPH '96: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA, pp. 137-146.
[2] Chace, M. and Sheth, P. (1973). Adaptation of computer techniques to the design of mechanical dynamic machinery, Design Engineering Technical Conference, Cincinnati, OH, USA, ASME Paper 73-DEPT-58.
[3] Coleman, M. (1998). A Stability Study of a Three-Dimensional Passive-Dynamic Model of Human Gait, Ph.D. thesis, Cornell University, Ithaca, NY.
[4] Craig, J. (2005). Introduction to Robotics: Mechanics and Control, 3rd Edition, Prentice Hall, Upper Saddle River, NJ.
[5] Featherstone, R. (1983). The calculation of robot dynamics using articulated body inertias, International Journal of Robotics Research 2(1): 13-30.
[6] Featherstone, R. (1984). Robot Dynamics Algorithms, Ph.D. thesis, Edinburgh University, Edinburgh.
[7] Featherstone, R. (1987). Robot Dynamics Algorithms, Kluwer Academic Publishers, Boston, MA/Dordrecht/Lancaster.
[8] Featherstone, R. (2008). Rigid Body Dynamics Algorithms, Springer, New York, NY.
[9] Garcia, M. (1999). Stability, Scaling, and Chaos in Passive-Dynamic Gait Models, Ph.D. thesis, Cornell University, Ithaca, NY.
[10] Goswami, A., Thuilot, B. and Espiau, B. (1996). Compass-like biped robot, Part I: Stability and bifurcation of passive gaits, Research Report RR-2996, INRIA, Montbonnot Saint Martin.
[11] Hiskens, I. (2001). Stability of hybrid system limit cycles: Application to the compass gait biped robot, Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL, USA, pp. 774-779.
[12] Hooker, W. and Margulies, G. (1965). The dynamical attitude equations for an n-body satellite, Journal of the Astronautical Sciences 12(4): 123-128.
[13] Jain, A. (2011). Robot and Multibody Dynamics: Analysis and Algorithms, Springer, New York, NY/Dordrecht/Heidelberg/London.
[14] McGeer, T. (1990). Passive dynamic walking, International Journal of Robotics Research 9(2): 62-82.
[15] Mirtich, B. (1996). Impulse-based Dynamic Simulation of Rigid Body Systems, Ph.D. thesis, University of California at Berkeley, CA.
[16] Orlandea, N., Chace, M. and Calahan, D. (1977). A sparsity-oriented approach to the dynamic analysis and design of mechanical systems, Part 1, Transactions of the ASME Journal of Engineering for Industry 99(3): 773-779.
[17] Paul, B. (1975). Analytical dynamics of mechanisms-A computer oriented overview, Mechanisms and Machine Theory 10(6): 481-507.
[18] Roberson, R. and Wittenburg, J. (1966). A dynamical formalism for an arbitrary number of interconnected rigid bodies with reference to the problem of satellite attitude control, Proceedings of the 3rd International Federation of Automatic Control Congress, London, UK, pp. 46D.2-46D.9.
[19] Rodriguez, G. (1991). A spatial operator algebra for manipulator modeling and control, International Journal of Robotics Research 10(4): 371-381.
[20] Uicker, J. (1965). On the Dynamic Analysis of Spatial Linkages Using 4 by 4 Matrices, Ph.D. thesis, Northwestern University, Evanston, IL.
[21] Vereshchagin, A. (1974). Computer simulation of the dynamics of complicated mechanisms of robot manipulators, Engineering Cybernetics 12(6): 65-70.
[22] Walker, M. and Orin, D. (1982). Efficient dynamic computer simulation of robotic mechanisms, Transactions of the ASME Journal of Dynamic Systems, Measurement and Control 104(3): 205-211.
[23] Wittenburg, J. (2007). Dynamics of Multibody Systems, Springer, Berlin/Heidelberg/New York.