Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2012_22_2_a0, author = {Emirsaj{\l}ow, Z.}, title = {Infinite-dimensional {Sylvester} equations: basic theory and application to observer design}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {245--257}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a0/} }
TY - JOUR AU - Emirsajłow, Z. TI - Infinite-dimensional Sylvester equations: basic theory and application to observer design JO - International Journal of Applied Mathematics and Computer Science PY - 2012 SP - 245 EP - 257 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a0/ LA - en ID - IJAMCS_2012_22_2_a0 ER -
%0 Journal Article %A Emirsajłow, Z. %T Infinite-dimensional Sylvester equations: basic theory and application to observer design %J International Journal of Applied Mathematics and Computer Science %D 2012 %P 245-257 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a0/ %G en %F IJAMCS_2012_22_2_a0
Emirsajłow, Z. Infinite-dimensional Sylvester equations: basic theory and application to observer design. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 2, pp. 245-257. http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a0/
[1] Alber, J. (2001). On implemented semigroups, Semigroup Forum 63(3): 371-386.
[2] Arendt, W., Raebiger, F. and Sourour, A. (1994). Spectral properties of the operator equation ax + xb = y, Quarterly Journal of Mathematics 45(2): 133-149.
[3] Chen, C.-T. (1984). Linear Systems Theory and Design, Holt, Rinehart and Winston, New York, NY.
[4] Emirsajłow, Z. (2005). Implemented Semigroup in Analysis of Infinite-Dimensional Sylvester and Lyapunov equations, Technical University of Szczecin Press, Szczecin, (in Polish).
[5] Emirsajłow, Z. and Townley, S. (2000). From PDEs with a boundary control to the abstract state equation with an unbounded input operator, European Journal of Control 7(1): 1-23.
[6] Emirsajłow, Z. and Townley, S. (2005). On application of the implemented semigroup to a problem arising in optimal control, International Journal of Control 78(4): 298-310.
[7] Engel, J. and Nagel, R. (2000). One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, NY.
[8] Gajic, Z. and Qureshi, M. (2000). Lyapunov Matrix Equation in Systems Stability and Control, Academic Press, San Diego, CA.
[9] Kuehnemund, F. (2001). Bi-continuous Semigroups on Spaces with Two Topologies: Theory and Applications, Ph.D. thesis, Eberhard-Karls-Univerität Tuebingen, Tuebingen.
[10] Phong, V. Q. (1991). The operator equation ax − xb = c with unbounded operators a and b and related Cauchy problems, Mathematische Zeitschrift 208(7): 567-588.