Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2012_22_1_a16, author = {Patan, K. and Korbicz, J.}, title = {Nonlinear model predictive control of a boiler unit: a fault tolerant control study}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {225--237}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a16/} }
TY - JOUR AU - Patan, K. AU - Korbicz, J. TI - Nonlinear model predictive control of a boiler unit: a fault tolerant control study JO - International Journal of Applied Mathematics and Computer Science PY - 2012 SP - 225 EP - 237 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a16/ LA - en ID - IJAMCS_2012_22_1_a16 ER -
%0 Journal Article %A Patan, K. %A Korbicz, J. %T Nonlinear model predictive control of a boiler unit: a fault tolerant control study %J International Journal of Applied Mathematics and Computer Science %D 2012 %P 225-237 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a16/ %G en %F IJAMCS_2012_22_1_a16
Patan, K.; Korbicz, J. Nonlinear model predictive control of a boiler unit: a fault tolerant control study. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 1, pp. 225-237. http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a16/
[1] Blanke, M., Kinnaert, M., Lunze, J. and Staroswiecki, M. (2006). Diagnosis and Fault-Tolerant Control, Springer, Berlin.
[2] Bonivento, C., Isidori, A.,Marconi, L. and Paoli, A. (2004). Implicit fault-tolerant control: Application to induction motors, Automatica 40(3): 355-371.
[3] Breger, L. and How, J. P. (2006). Nonlinear model predictive control technique for unmaned air vehicles, Journal of Guidance, Control and Dynamics 29(5): 1179-1188.
[4] Camacho, E. F. and Bordóns, C. (2004). Model Predictive Control, Springer-Verlag, Berlin.
[5] Chilin, D., Liu, J., de la Pẽna, D. M., Christofides, P. D. and Davis, J. F. (2010). Detection, isolation and handling of actuators faults in distributed model predictive control, Journal of Process Control 20(9): 1059-1075.
[6] Clark, D. W., Mothadi, C. and Tuffs, P. S. (1987). Generalized predictive control-Part I: The basic algorithm, Automatica 23(2): 137-148.
[7] Ducard, G. J. J. (2009). Fault-tolerant Flight Control and Guidance Systems. Practical Methods for Small Unmanned Aerial Vehicles, Advances in Industrial Control, Springer, London.
[8] Haykin, S. (1999). Neural Networks. A Comprehensive Foundation, 2nd Edn., Prentice-Hall, Upper Saddle River, NJ.
[9] Isermann, R. (2006). Fault Diagnosis Systems. An Introduction from Fault Detection to Fault Tolerance, Springer-Verlag, New York, NY.
[10] Joosten, D. A. and Maciejowski, J. (2009). MPC design for fault tolerant flight control purposes based upon an existing output feedback controller, Proceedings of 7th International Symposium on Fault Detection, Supervision and Safety of Technical Processes, SAFEPROCESS 2009, Barcelona, Spain, (on CD-ROM).
[11] Korbicz, J., Kościelny, J., Kowalczuk, Z. and Cholewa,W. (Eds.) (2004). Fault Diagnosis. Models, Artificial Intelligence, Applications, Springer-Verlag, Berlin/Heidelberg.
[12] Maciejowski, J. M. (1998). The implicit daisy-chaining property of constrained predictive control, Applied Mathematics and Computer Science 8(4): 695-711.
[13] Maciejowski, J. (2002). Predictive Control with Constraints, Prentice-Hall, Harlow.
[14] Mayne, D. Q., Rawlings, J. B., Rao, C.V. and Scokaert, P.O.M. (2000). Constrained model predictive control: Stability mand optimality, Automatica 36(6): 789-814.
[15] Nørgaard, M., Ravn, O., Poulsen, N. and Hansen, L. (2000). Networks for Modelling and Control of Dynamic Systems, Springer-Verlag, London.
[16] Noura, K., Theilliol, D., Ponsart, J. C. and Chamseddine, A. (2009). Fault Tolerant Control Systems. Design and Practical Applications, Advanced in Industrial Control, Springer, London.
[17] Patan, K. (2008). Artificial Neural Networks for the Modelling and Fault Diagnosis of Technical Processes, Lecture Notes in Control and Information Sciences, Vol. 377, Springer-Verlag, Berlin.
[18] Patan, K. (2009a). Fault detection and accommodation by means of neural networks. application to the boiler unit, Proceedings of the 7th International Symposium on Fault Detection, Supervision and Safety of Technical Processes, SAFEPROCESS 2009, Barcelona, Spain, (on CD-ROM).
[19] Patan, K. (2009b). Locally recurrent networks for fault approximation and accommodation, in Z. Kowalczuk (Ed.), Diagnosis of Processes and Systems, Pomeranian Science and Technology Publishers PWNT, Gdańsk, pp. 263-270.
[20] Sourander, M., Vermasvuori, M., Sauter, D., Liikala, T. and Jämsä -Jounela, S.-L. (2009). Fault tolerant control for a dearomatisation process, Journal of Process Control 19(7): 1091-1102.
[21] Staroswiecki, M., Yang, H. and Jiang, B. (2007). Active fault tolerant control based on progressive accommodation, Automatica 43(12): 2070-2076.
[22] Theillol, D., Cédric, J. and Zhang, Y. (2008). Actuator fault tolerant control design based on reconfigurable reference input, International Journal of Applied Mathematics and Computer Science 18(4): 553-560, DOI: 10.2478/v10006-008-0048-1.
[23] Zhang, Y. (2007). Active fault-tolerant control systems: Integration of fault diagnosis and reconfigurable control, in J. Korbicz, K. Patan and M. Kowal (Eds.), Fault Diagnosis and Fault Tolerant Control, Challenging Problems of Science-Theory and Applications: Automatic Control and Robotics, Academic Publishing House EXIT, Warsaw, pp. 21-41.