Positive stable realizations of fractional continuous-time linear systems
International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 4, pp. 697-702.

Voir la notice de l'article provenant de la source Library of Science

Conditions for the existence of positive stable realizations with system Metzler matrices for fractional continuous-time linear systems are established. A procedure based on the Gilbert method for computation of positive stable realizations of proper transfer matrices is proposed. It is shown that linear minimum-phase systems with real negative poles and zeros always have positive stable realizations.
Keywords: fractional, positive, stable, realization, system Metzler matrix, procedure, linear continuous-time
Mots-clés : układ liniowy, układ ciągły, macierz Metzlera
@article{IJAMCS_2011_21_4_a9,
     author = {Kaczorek, T.},
     title = {Positive stable realizations of fractional continuous-time linear systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {697--702},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_4_a9/}
}
TY  - JOUR
AU  - Kaczorek, T.
TI  - Positive stable realizations of fractional continuous-time linear systems
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2011
SP  - 697
EP  - 702
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_4_a9/
LA  - en
ID  - IJAMCS_2011_21_4_a9
ER  - 
%0 Journal Article
%A Kaczorek, T.
%T Positive stable realizations of fractional continuous-time linear systems
%J International Journal of Applied Mathematics and Computer Science
%D 2011
%P 697-702
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_4_a9/
%G en
%F IJAMCS_2011_21_4_a9
Kaczorek, T. Positive stable realizations of fractional continuous-time linear systems. International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 4, pp. 697-702. http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_4_a9/

[1] Benvenuti, L. and Farina, L. (2004). A tutorial on the positive realization problem, IEEE Transactions on Control 49(5): 651-664.

[2] Farina, L. and Rinaldi, S. (2000). Positive Linear Systems, Theory and Applications, J. Wiley, NewYork, NY.

[3] Kaczorek, T. (1992). Linear Control Systems, Vol. 1, Research Studies Press, J. Wiley, New York, NY.

[4] Kaczorek, T. (2002). Positive 1D and 2D Systems, Springer-Verlag, London.

[5] Kaczorek, T. (2004). Realization problem for positive discrete-time systems with delay, System Science 30(4): 117-130.

[6] Kaczorek, T. (2005). Positive minimal realizations for singular discrete-time systems with delays in state and delays in control, Bulletin of the Polish Academy of Sciences: Technical Siences 53(3): 293-298.

[7] Kaczorek, T. (2006a). A realization problem for positive continuous-time systems with reduced numbers of delays, International Journal of Applied Mathematics and Computer Science 16 (3): 325-331.

[8] Kaczorek, T. (2006b). Computation of realizations of discrete-time cone systems, Bulletin of the Polish Academy of Sciences: Technical Siences 54(3): 347-350.

[9] Kaczorek, T. (2006c). Realization problem for positive multivariable discrete-time linear systems with delays in the state vector and inputs, International Journal of Applied Mathematics and Computer Science 16(2): 169-174.

[10] Kaczorek, T. (2008a). Fractional positive continuous-time linear systems and their reachability, International Journal of Applied Mathematics and Computer Science 18(2): 223-228, DOI: 10.2478/v10006-008-0020-0.

[11] Kaczorek, T. (2008b). Realization problem for fractional continuous-time systems, Archives of Control Sciences 18(1): 43-58.

[12] Kaczorek, T. (2008c). Realization problem for positive 2D hybrid systems, COMPEL 27(3): 613-623.

[13] Kaczorek, T. (2009a). Fractional positive linear systems, Kybernetes: The International Journal of Systems Cybernetics 38 (7/8): 1059-1078.

[14] Kaczorek, T. (2009b). Polynomial and Rational Matrices, Springer-Verlag, London.

[15] Kaczorek, T. (2011). Selected Problems in Fractional Systems Theory, Springer-Verlag, Berlin.

[16] Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J. (2006). Theory and Applications of Fractional Differential Equations, North-Holland, Amsterdam.

[17] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego, CA.

[18] Shaker, U. and Dixon, M. (1977). Generalized minimal realization of transfer-function matrices, International Journal of Control 25(5): 785-803.