Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2011_21_4_a9, author = {Kaczorek, T.}, title = {Positive stable realizations of fractional continuous-time linear systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {697--702}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_4_a9/} }
TY - JOUR AU - Kaczorek, T. TI - Positive stable realizations of fractional continuous-time linear systems JO - International Journal of Applied Mathematics and Computer Science PY - 2011 SP - 697 EP - 702 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_4_a9/ LA - en ID - IJAMCS_2011_21_4_a9 ER -
%0 Journal Article %A Kaczorek, T. %T Positive stable realizations of fractional continuous-time linear systems %J International Journal of Applied Mathematics and Computer Science %D 2011 %P 697-702 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_4_a9/ %G en %F IJAMCS_2011_21_4_a9
Kaczorek, T. Positive stable realizations of fractional continuous-time linear systems. International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 4, pp. 697-702. http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_4_a9/
[1] Benvenuti, L. and Farina, L. (2004). A tutorial on the positive realization problem, IEEE Transactions on Control 49(5): 651-664.
[2] Farina, L. and Rinaldi, S. (2000). Positive Linear Systems, Theory and Applications, J. Wiley, NewYork, NY.
[3] Kaczorek, T. (1992). Linear Control Systems, Vol. 1, Research Studies Press, J. Wiley, New York, NY.
[4] Kaczorek, T. (2002). Positive 1D and 2D Systems, Springer-Verlag, London.
[5] Kaczorek, T. (2004). Realization problem for positive discrete-time systems with delay, System Science 30(4): 117-130.
[6] Kaczorek, T. (2005). Positive minimal realizations for singular discrete-time systems with delays in state and delays in control, Bulletin of the Polish Academy of Sciences: Technical Siences 53(3): 293-298.
[7] Kaczorek, T. (2006a). A realization problem for positive continuous-time systems with reduced numbers of delays, International Journal of Applied Mathematics and Computer Science 16 (3): 325-331.
[8] Kaczorek, T. (2006b). Computation of realizations of discrete-time cone systems, Bulletin of the Polish Academy of Sciences: Technical Siences 54(3): 347-350.
[9] Kaczorek, T. (2006c). Realization problem for positive multivariable discrete-time linear systems with delays in the state vector and inputs, International Journal of Applied Mathematics and Computer Science 16(2): 169-174.
[10] Kaczorek, T. (2008a). Fractional positive continuous-time linear systems and their reachability, International Journal of Applied Mathematics and Computer Science 18(2): 223-228, DOI: 10.2478/v10006-008-0020-0.
[11] Kaczorek, T. (2008b). Realization problem for fractional continuous-time systems, Archives of Control Sciences 18(1): 43-58.
[12] Kaczorek, T. (2008c). Realization problem for positive 2D hybrid systems, COMPEL 27(3): 613-623.
[13] Kaczorek, T. (2009a). Fractional positive linear systems, Kybernetes: The International Journal of Systems Cybernetics 38 (7/8): 1059-1078.
[14] Kaczorek, T. (2009b). Polynomial and Rational Matrices, Springer-Verlag, London.
[15] Kaczorek, T. (2011). Selected Problems in Fractional Systems Theory, Springer-Verlag, Berlin.
[16] Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J. (2006). Theory and Applications of Fractional Differential Equations, North-Holland, Amsterdam.
[17] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego, CA.
[18] Shaker, U. and Dixon, M. (1977). Generalized minimal realization of transfer-function matrices, International Journal of Control 25(5): 785-803.