Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2011_21_3_a9, author = {Kaczorek, T.}, title = {New stability conditions for positive continuous-discrete {2D} linear systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {521--524}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a9/} }
TY - JOUR AU - Kaczorek, T. TI - New stability conditions for positive continuous-discrete 2D linear systems JO - International Journal of Applied Mathematics and Computer Science PY - 2011 SP - 521 EP - 524 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a9/ LA - en ID - IJAMCS_2011_21_3_a9 ER -
%0 Journal Article %A Kaczorek, T. %T New stability conditions for positive continuous-discrete 2D linear systems %J International Journal of Applied Mathematics and Computer Science %D 2011 %P 521-524 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a9/ %G en %F IJAMCS_2011_21_3_a9
Kaczorek, T. New stability conditions for positive continuous-discrete 2D linear systems. International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 3, pp. 521-524. http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a9/
[1] Bistritz, Y. (2003). A stability test for continuous-discrete bivariate polynomials, Proceedings of the International Symposium on Circuits and Systems, Vol. 3, pp. 682-685.
[2] Busłowicz, M. (2010a). Stability and robust stability conditions for a general model of scalar continuous-discrete linear systems, Pomiary, Automatyka, Kontrola 56(2): 133-135.
[3] Busłowicz, M. (2010b). Robust stability of the new general 2D model of a class of continuous-discrete linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 58(4): 561-566.
[4] Busłowicz, M. (2011). Improved stability and robust stability conditions for a general model of scalar continuous-discrete linear systems, Pomiary, Automatyka, Kontrola 57(2): 188-189.
[5] Dymkov, M., Gaishun, I., Rogers, E., Gałkowski, K. and Owens, D. H. (2004). Control theory for a class of 2D continuous-discrete linear systems, International Journal of Control 77 (9): 847-860.
[6] Farina, L. and Rinaldi, S. (2000). Positive Linear Systems: Theory and Applications, J. Wiley, NewYork, NY.
[7] Gałkowski, K., Rogers, E., Paszke, W. and Owens, D. H. (2003). Linear repetitive process control theory applied to a physical example, International Journal of Applied Mathematics and Computer Science 13 (1): 87-99.
[8] Kaczorek, T. (1998). Reachability and minimum energy control of positive 2D continuous-discrete systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 46 (1): 85-93.
[9] Kaczorek, T. (2002). Positive 1D and 2D Systems, Springer-Verlag, London.
[10] Kaczorek, T. (2007). Positive 2D hybrid linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 55(4): 351-358.
[11] Kaczorek, T. (2008a). Positive fractional 2D hybrid linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 56 (3): 273-277.
[12] Kaczorek, T. (2008b). Realization problem for positive 2D hybrid systems, COMPEL 27 (3): 613-623.
[13] Kaczorek, T. (2009). Stability of positive continuous-time linear systems with delays, Bulletin of the Polish Academy of Sciences: Technical Sciences 57(4): 395-398.
[14] Kaczorek, T., Marchenko, V. and Sajewski, Ł. (2008). Solvability of 2D hybrid linear systems-Comparison of the different methods, Acta Mechanica et Automatica 2(2): 59-66.
[15] Sajewski, Ł. (2009). Solution of 2D singular hybrid linear systems, Kybernetes 38 (7/8): 1079-1092.
[16] Xiao, Y. (2001a). Stability test for 2-D continuous-discrete systems, Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL, USA, Vol. 4, pp. 3649-3654.
[17] Xiao, Y. (2001b). Robust Hurwitz-Schur stability conditions of polytopes of 2-D polynomials, Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL, USA, Vol. 4, pp. 3643-3648.
[18] Xiao, Y. (2003). Stability, controllability and observability of 2-D continuous-discrete systems, Proceedings of the International Symposium on Circuits and Systems, Bangkok, Thailand, Vol. 4, pp. 468-471.