Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2011_21_3_a7, author = {Ztot, K. and Zerrik, E. H. and Bourray, H.}, title = {Regional control problem for distributed bilinear systems: approach and simulations}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {499--508}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a7/} }
TY - JOUR AU - Ztot, K. AU - Zerrik, E. H. AU - Bourray, H. TI - Regional control problem for distributed bilinear systems: approach and simulations JO - International Journal of Applied Mathematics and Computer Science PY - 2011 SP - 499 EP - 508 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a7/ LA - en ID - IJAMCS_2011_21_3_a7 ER -
%0 Journal Article %A Ztot, K. %A Zerrik, E. H. %A Bourray, H. %T Regional control problem for distributed bilinear systems: approach and simulations %J International Journal of Applied Mathematics and Computer Science %D 2011 %P 499-508 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a7/ %G en %F IJAMCS_2011_21_3_a7
Ztot, K.; Zerrik, E. H.; Bourray, H. Regional control problem for distributed bilinear systems: approach and simulations. International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 3, pp. 499-508. http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a7/
[1] Ball, J. M., Marsden, J. E. and Slemrod, M. (1982). Controllability for distributed bilinear systems, SIAM Journal on Control and Optimization 20(4): 575-597.
[2] Bradley, M. E. and Lenhart, S. (2001). Bilinear spatial control of the velocity term in a Kirchhoff plate equation, Electronic Journal of Differental Equations (27): 1-15.
[3] El Alami, N. (1988). Algorithms for implementation of optimal control with quadratic criterion of bilinear systems, in A. Bensoussan and J. L. Lions (Eds.) Analysis and Optimization of Systems, Lecture Notes in Control and Information Sciences, Vol. 111, Springer-Verlag, London, pp. 432-444, (in French).
[4] El Jai, A., Simon, M. C., Zerrik, E. and Prirchard, A.J. (1995). Regional controllability of distributed parameter systems, International Journal of Control 62(6): 1351-1365.
[5] Joshi, H. R. (2005). Optimal control of the convective velocity coefficient in a parabolic problem, Nonlinear Analysis 63 (5-7): 1383-1390.
[6] Kato, T. (1995). Perturbation Theory for Linear Operators, Springer Verlag, Berlin/Heidelberg.
[7] Khapalov, A. Y. (2002a). Global non-negative controllability of the semilinear parabolic equation governed by bilinear control, ESAIM: Control, Optimisation and Calculus of Variations 7: 269-283.
[8] Khapalov, A. Y. (2002b) On bilinear controllability of the parabolic equation with the reaction-diffusion term satisfying Newton's, Journal of Computational and Applied Mathematics 21: 1-23.
[9] Khapalov, A. Y. (2010). Controllability of Partial Differential Equations Governed by Multiplicative Controls, Lecture Notes in Mathematics, Vol. 1995, Springer, Berlin, p. 284.
[10] Lenhart, S. and Liang, M. (2000). Bilinear optimal control for a wave equation with viscous damping, Houston Journal of Mathematics 26(3): 575-595.
[11] Pazy, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, NY.
[12] Zerrik, E., Ouzahra, M. and Ztot, K. (2004). Regional stabilization for infinite bilinear systems, IEE: Control Theory and Applications 151(1): 109-116.
[13] Zerrik, E. and Kamal, A. (2007). Output controllability for semi linear distributed parabolic system, Journal of Dynamical and Control Systems 13(2): 289-306.
[14] Zerrik, E., Larhrissi, R. and Bourray, H. (2007). An output controllability problem for semi linear distributed hyperbolic system, International Journal of Applied Mathematics and Computer Science 17(4): 437-448, DOI: 10.2478/v10006-007-0035-y.