A sign preserving mixed finite element approximation for contact problems
International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 3, pp. 487-498.

Voir la notice de l'article provenant de la source Library of Science

This paper is concerned with the frictionless unilateral contact problem (i.e., a Signorini problem with the elasticity operator). We consider a mixed finite element method in which the unknowns are the displacement field and the contact pressure. The particularity of the method is that it furnishes a normal displacement field and a contact pressure satisfying the sign conditions of the continuous problem. The a priori error analysis of the method is closely linked with the study of a specific positivity preserving operator of averaging type which differs from the one of Chen and Nochetto. We show that this method is convergent and satisfies the same a priori error estimates as the standard approach in which the approximated contact pressure satisfies only a weak sign condition. Finally we perform some computations to illustrate and compare the sign preserving method with the standard approach.
Keywords: variational inequality, positive operator, averaging operator, contact problem, Signorini problem, mixed finite element method
Mots-clés : nierówność wariacyjna, zagadnienie kontaktowe, metoda elementów skończonych
@article{IJAMCS_2011_21_3_a6,
     author = {Hild, P.},
     title = {A sign preserving mixed finite element approximation for contact problems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {487--498},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a6/}
}
TY  - JOUR
AU  - Hild, P.
TI  - A sign preserving mixed finite element approximation for contact problems
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2011
SP  - 487
EP  - 498
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a6/
LA  - en
ID  - IJAMCS_2011_21_3_a6
ER  - 
%0 Journal Article
%A Hild, P.
%T A sign preserving mixed finite element approximation for contact problems
%J International Journal of Applied Mathematics and Computer Science
%D 2011
%P 487-498
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a6/
%G en
%F IJAMCS_2011_21_3_a6
Hild, P. A sign preserving mixed finite element approximation for contact problems. International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 3, pp. 487-498. http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a6/

[1] Adams, R. (1975). Sobolev Spaces, Academic Press, New York, NY/London.

[2] Belhachmi, Z., Sac-Epée, J.-M. and Sokolowski, J. (2005). Mixed finite element methods for smooth domain formulation of crack problems, SIAM Journal on Numerical Analysis 43(3): 1295-1320.

[3] Ben Belgacem, F. and Brenner, S. (2001). Some nonstandard finite element estimates with applications to 3D Poisson and Signorini problems, Electronic Transactions on Numerical Analysis 12: 134-148.

[4] Ben Belgacem, F., Hild, P. and Laborde, P. (1999). Extension of the mortar finite element method to a variational inequality modeling unilateral contact, Mathematical Models and Methods in the Applied Sciences 9(2): 287-303.

[5] Ben Belgacem, F. and Renard, Y. (2003). Hybrid finite element methods for the Signorini problem, Mathematics of Computation 72(243): 1117-1145.

[6] Bernardi, C. and Girault, V. (1998). A local regularisation operator for triangular and quadrilateral finite elements, SIAM Journal on Numerical Analysis 35(5): 1893-1916.

[7] Brenner, S. and Scott, L. (2002). The Mathematical Theory of Finite Element Methods, Springer-Verlag, New York, NY.

[8] Chen, Z. and Nochetto, R. (2000). Residual type a posteriori error estimates for elliptic obstacle problems, Numerische Mathematik 84(4): 527-548.

[9] Ciarlet, P. (1991). The finite element method for elliptic problems, in P. G. Ciarlet and J.-L. Lions (Eds.), Handbook of Numerical Analysis, Vol. II, Part 1, North Holland, Amsterdam, pp. 17-352.

[10] Clément, P. (1975). Approximation by finite element functions using local regularization, RAIRO Modélisation Mathématique et Analyse Num´erique 2(R-2): 77-84.

[11] Coorevits, P., Hild, P., Lhalouani, K. and Sassi, T. (2002). Mixed finite element methods for unilateral problems: Convergence analysis and numerical studies, Mathematics of Computation 71(237): 1-25.

[12] Duvaut, G. and Lions, J.-L. (1972). Les inéquations en mécanique et en physique Dunod, Paris.

[13] Eck, C., Jarušek, J. and Krbec, M. (2005). Unilateral Contact Problems. Variational Methods and Existence Theorems, CRC Press, Boca Raton, FL.

[14] Fichera, G. (1964). Elastic problems with unilateral constraints, the problem of ambiguous boundary conditions, Memorie della Accademia Nazionale dei Lincei 8(7): 91-140, (in Italian).

[15] Fichera, G. (1974). Existence theorems in linear and semilinear elasticity, Zeitschrift für Angewandte Mathematik und Mechanik 54(12): 24-36.

[16] Grisvard, P. (1985). Elliptic Problems in Nonsmooth Domains, Pitman, Boston, MA.

[17] Han, W. and Sofonea, M. (2002). Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, American Mathematical Society, Providence, RI.

[18] Haslinger, J., Hlaváček, I. and Nečas, J. (1996). Numerical methods for unilateral problems in solid mechanics, in P. Ciarlet and J.-L. Lions (Eds.), Handbook of Numerical Analysis, Vol. IV, Part 2, North Holland, Amsterdam, pp. 313-485.

[19] Hilbert, S. (1973). A mollifier useful for approximations in Sobolev spaces and some applications to approximating solutions of differential equations, Mathematics of Computation 27: 81-89.

[20] Hild, P. (2000). Numerical implementation of two nonconforming finite element methods for unilateral contact, Computer Methods in Applied Mechanics and Engineering 184(1): 99-123.

[21] Hild, P. (2002). On finite element uniqueness studies for Coulomb's frictional contact model, International Journal of Applied Mathematics and Computer Science 12(1): 41-50.

[22] Hild, P. and Nicaise, S. (2007). Residual a posteriori error estimators for contact problems in elasticity, Mathematical Modelling and Numerical Analysis 41(5): 897-923.

[23] Hiriart-Urruty, J.-B. and Lemaréchal, C. (1993). Convex Analysis and Minimization Algorithms I, Springer, Berlin.

[24] Hüeber, S. and Wohlmuth, B. (2005a). An optimal error estimate for nonlinear contact problems, SIAM Journal on Numerical Analysis 43(1): 156-173.

[25] Hüeber, S. and Wohlmuth, B. (2005b). A primal-dual active set strategy for non-linear multibody contact problems, Computer Methods in Applied Mechanics and Engineering 194(27-29): 3147-3166.

[26] Khludnev, A. and Sokolowski, J. (2004). Smooth domain method for crack problems, Quarterly of Applied Mathematics 62(3): 401-422.

[27] Kikuchi, N. and Oden, J. (1988). Contact Problems in Elasticity, SIAM, Philadelphia, PA.

[28] Laursen, T. (2002). Computational Contact and ImpactMechanics, Springer, Berlin.

[29] Nochetto, R. and Wahlbin, L. (2002). Positivity preserving finite element approximation, Mathematics of Computation 71(240): 1405-1419.

[30] Scott, L. and Zhang, S. (1990). Finite element interpolation of nonsmooth functions satisfying boundary conditions, Mathematics of Computation 54(190): 483-493.

[31] Strang, G. (1972). Approximation in the finite element method, Numerische Mathematik 19: 81-98.

[32] Wohlmuth, B. and Krause, R. (2003). Monotone multigrid methods on nonmatching grids for nonlinear multibody contact problems, SIAM Journal on Scientific Computation 25(1): 324-347.

[33] Wriggers, P. (2002). Computational Contact Mechanics, Wiley, Chichester.