Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2011_21_3_a0, author = {Chen, W. and Khan, A, Q. and Abid, M. and Ding, S. X.}, title = {Integrated design of observer based fault detection for a class of uncertain nonlinear systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {423--430}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a0/} }
TY - JOUR AU - Chen, W. AU - Khan, A, Q. AU - Abid, M. AU - Ding, S. X. TI - Integrated design of observer based fault detection for a class of uncertain nonlinear systems JO - International Journal of Applied Mathematics and Computer Science PY - 2011 SP - 423 EP - 430 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a0/ LA - en ID - IJAMCS_2011_21_3_a0 ER -
%0 Journal Article %A Chen, W. %A Khan, A, Q. %A Abid, M. %A Ding, S. X. %T Integrated design of observer based fault detection for a class of uncertain nonlinear systems %J International Journal of Applied Mathematics and Computer Science %D 2011 %P 423-430 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a0/ %G en %F IJAMCS_2011_21_3_a0
Chen, W.; Khan, A, Q.; Abid, M.; Ding, S. X. Integrated design of observer based fault detection for a class of uncertain nonlinear systems. International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 3, pp. 423-430. http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a0/
[1] Abbaszadeh, M. and Marquez, H. (2008). LMI optimization approach to robustH infinity filtering for discrete-time nonlinear uncertain systems, Proceedings of the American Control Conference, Washington, DC, USA, pp. 1905-1910.
[2] Basseville, M. and Nikiforov, I. V. (1993). Detection of Abrupt Changes-Theory and Application, Prentice-Hall, Englewood Cliffs, NJ.
[3] Blanke, M., Kinnaert, M., Lunze, J. and Staroswiecki, M. (2003). Diagnosis and Fault-Tolerant Control, Springer, New York, NY.
[4] Chen, J. and Patton, R. J. (1999). Robust Model-Based Fault Diagnosis for Dynamic Systems, Kluwer Academic Publishers, Boston, MA.
[5] Chen, W. and Saif, M. (2007). Observer-based strategies for actuator fault detection, isolation and estimation for certain class of uncertain nonlinear systems, IET Control Theory Applications 1(6): 1672-1680.
[6] de Souza, C. E., Xie, L. and Wang, Y. (1993). H infinity filtering for a class of uncertain nonlinear systems, Systems and Control Letters 20(6): 419426.
[7] Ding, S. X. (2008). Model-based Fault Diagnosis Techniques, Springer, Berlin.
[8] Ding, S. X., Frank, P. M., Ding, E. L. and Jeinsch, T. (2000a). A unified approach to the optimization of fault detection systems, International Journal of Adaptive Control and Signal Processing 14(7): 725-745.
[9] Ding, S. X., Frank, P. M., Ding, E. L. and Jeinsch, T. (2000b). Fault detection system design based on a new trade-off strategy, Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, pp. 4144-4149.
[10] Ding, S. X., Guo, L. and Frank, P. M. (1993). A frequency domain approach to fault detection of uncertain dynamic systems, Proceedings of the 32th IEEE Conference on Decision and Control, San Antonio, TX, USA, pp. 1722-1727.
[11] Edelmayer, A., Bokor, J., Szab, Z. and Szigeti, F. (2004). Input reconstruction by means of system inversion: A geometric approach to fault detection and isolation in nonlinear systems, International Journal of Applied Mathematics and Computer Science 14(2): 189-199.
[12] Ferrari, R., Parisini, T. and Polycarpou, M. (2007). A fault detection and isolation scheme for nonlinear uncertain discrete-time systems, Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, pp. 1009-1014.
[13] Frank, P. M. (1994). On-line fault detection in uncertain nonlinear systems using diagnostic observers: A survey, International Journal of Systems Science 25(12): 2129-2154.
[14] Frank, P. M. and Ding, S. X. (1997). Survey of robust residual generation and evaluation methods in observer-based fault detection systems, Journal of Process Control 7(6): 403-424.
[15] Hammouri, H., Kinnaert, M. and Yaagoubi, E. H. E. (1999). Observer-based approach to fault detection and isolation for nonlinear systems, IEEE Transactions on Automatic Control 44(10): 1879-1884.
[16] Henry, D. and Zolghadri, A. (2005). Design and analysis of robust residual generators for systems under feedback control, Automatica 41(2): 251-264.
[17] Hou, M. and Patton, R. J. (1996). An LMI approach to H_/H infinity fault detection observers, Proceedings of the UKACC International Conference on Control, Exeter, UK, pp. 1710-1715.
[18] Khan, A. Q., Abid, M., Chen, W. and Ding, S. X. (2009). On optimal fault detection of nonlinear systems, Proceedings of the 48th IEEE Conference on Decision and Control, Shanghai, China, pp. 1032-1037.
[19] Lai, T. L. and Shan, J. Z. (1999). Efficient recursive algorithms for detection of abrupt changes in signals and control systems, IEEE Transactions on Automatic Control 44(5): 952-966.
[20] Narasimhan, S., Vachhani, P. and Rengaswamy, R. (2007). New nonlinear residual feedback observer for fault diagnosis in nonlinear systems, Automatica 44(9): 2222-2229.
[21] Patton, R. J., Frank, P. M. and Clark, R. N. (2002). Issues of Fault Diagnosis for Dynamic Systems, Springer, Berlin.
[22] Pertew, A. M., Marquez, H. J. and Zhao, Q. (2007). LMI-based sensor fault diagnosis for nonlinear Lipschitz systems, Automatica 43(8): 1464-1469.
[23] Qiu, Z. and Gertler, J. (1993). Robust FDI systems and H infinity optimization, Proceedings of the American Control Conference, San Francisco, CA, USA, pp. 1710-1715.
[24] Rajamani, R. (1998). Observers for Lipschitz nonlinear systems, IEEE Transactions on Automatic Control 43(3): 397-401.
[25] Rajamani, R. and Ganguli, A. (2004). Sensor fault diagnostics for a class of non-linear systems using linear matrix inequalities, International Journal of Control 77(10): 920-930.
[26] Shumsky, A. (2007). Redundancy relations for fault diagnosis in nonlinear uncertain systems, International Journal of Applied Mathematics and Computer Science 17(4): 477-489, DOI: 10.2478/v10006-007-0040-1.
[27] Wang, J. L., Yang, G. and Liu, J. (2007). An LMI approach to H_ index and mixed H_/H infinity fault detection observer design, Automatica 43(9): 1656-1665.
[28] Wang, Y., Xie, L. and Souza, C. E. (1992). Robust control of a class of uncertain nonlinear systems, Systems Control Letters 19(2): 139-149.
[29] Xie, L., de Souza, C.E. and Wang, Y. (1996). Robust filtering for a class of discrete-time uncertain nonlinear systems: An H infinity approach, International Journal of Robust and Nonlinear Control 6(4): 297312.
[30] Yaz, E. and Azemi, A. (1998). Actuator fault detection and isolation in nonlinear systems using LMIs and LMEs, Proceedings of the American Control Conference, Philadelphia, PA, USA, pp. 1590-1594.
[31] Zhang, P. and Ding, S. X. (2008). An integrated trade-off design of observer based fault detection systems, Automatica 44(7): 1886-1894.
[32] Zhang, P., Ding, S. X., Wang, G. and Zhou, D. (2005). Fault detection of linear discrete-time periodic systems, IEEE Transactions on Automatic Control 50(2): 239-244.