Singular fractional linear systems and electrical circuits
International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 2, pp. 379-384.

Voir la notice de l'article provenant de la source Library of Science

A new class of singular fractional linear systems and electrical circuits is introduced. Using the Caputo definition of the fractional derivative, the Weierstrass regular pencil decomposition and the Laplace transformation, the solution to the state equation of singular fractional linear systems is derived. It is shown that every electrical circuit is a singular fractional system if it contains at least one mesh consisting of branches only with an ideal supercapacitor and voltage sources or at least one node with branches with supercoils.
Keywords: singular, fractional system, linear circuit, regular pencil, supercapacitor, supercoil
Mots-clés : system ułamkowy, układ liniowy, superkondensator
@article{IJAMCS_2011_21_2_a12,
     author = {Kaczorek, T.},
     title = {Singular fractional linear systems and electrical circuits},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {379--384},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_2_a12/}
}
TY  - JOUR
AU  - Kaczorek, T.
TI  - Singular fractional linear systems and electrical circuits
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2011
SP  - 379
EP  - 384
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_2_a12/
LA  - en
ID  - IJAMCS_2011_21_2_a12
ER  - 
%0 Journal Article
%A Kaczorek, T.
%T Singular fractional linear systems and electrical circuits
%J International Journal of Applied Mathematics and Computer Science
%D 2011
%P 379-384
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_2_a12/
%G en
%F IJAMCS_2011_21_2_a12
Kaczorek, T. Singular fractional linear systems and electrical circuits. International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 2, pp. 379-384. http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_2_a12/

[1] Dodig, M. and Stosic, M. (2009). Singular systems state feedbacks problems, Linear Algebra and Its Applications 431(8): 1267-1292.

[2] Dai, L. (1989). Singular Control Systems, Springer-Verlag, Berlin.

[3] Fahmy, M. H and O'Reill J. (1989). Matrix pencil of closed-loop descriptor systems: Infinite-eigenvalues assignment, International Journal of Control 49(4): 1421-1431.

[4] Gantmacher, F. R. (1960). The Theory of Matrices, Chelsea Publishing Co., New York, NY.

[5] Kaczorek, T. (1992). Linear Control Systems, Vol. 1, Research Studies Press, John Wiley, New York, NY.

[6] Kaczorek, T. (2004). Infinite eigenvalue assignment by output-feedbacks for singular systems, International Journal of Applied Mathematics and Computer Science 14(1): 19-23.

[7] Kaczorek, T. (2007a). Polynomial and Rational Matrices. Applications in Dynamical Systems Theory, Springer-Verlag, London.

[8] Kaczorek, T. (2007b). Realization problem for singular positive continuous-time systems with delays, Control and Cybernetics 36(1): 47-57.

[9] Kaczorek, T. (2008). Fractional positive continuous-time linear systems and their reachability, International Journal of Applied Mathematics and Computer Science 18(2): 223-228, DOI:10.2478/v10006-008-0020-0.

[10] Kaczorek, T. (2009). Selected Problems in the Theory of Fractional Systems, Białystok Technical University, Białystok, (in Polish).

[11] Kaczorek, T. (2010). Positive linear systems with different fractional orders, Bulletin of the Polish Academy of Sciences: Technical Sciences 58(3): 453-458.

[12] Kaczorek, T. (2011). Positivity and reachability of fractional electrical circuits, Acta Mechanica et Automatica 3(1), (in press).

[13] Kucera, V. and Zagalak, P. (1988). Fundamental theorem of state feedback for singular systems, Automatica 24(5): 653-658.

[14] Podlubny I. (1999). Fractional Differential Equations, Academic Press, New York, NY.

[15] Van Dooren, P. (1979). The computation of Kronecker's canonical form of a singular pencil, Linear Algebra and Its Applications 27(1): 103-140.