Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2011_21_1_a8, author = {Raja, R. and Sakthivel, R. and Anthoni, S. M. and Kim, H.}, title = {Stability of impulsive {Hopfield} neural networks with {Markovian} switching and time-varying delays}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {127--135}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_1_a8/} }
TY - JOUR AU - Raja, R. AU - Sakthivel, R. AU - Anthoni, S. M. AU - Kim, H. TI - Stability of impulsive Hopfield neural networks with Markovian switching and time-varying delays JO - International Journal of Applied Mathematics and Computer Science PY - 2011 SP - 127 EP - 135 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_1_a8/ LA - en ID - IJAMCS_2011_21_1_a8 ER -
%0 Journal Article %A Raja, R. %A Sakthivel, R. %A Anthoni, S. M. %A Kim, H. %T Stability of impulsive Hopfield neural networks with Markovian switching and time-varying delays %J International Journal of Applied Mathematics and Computer Science %D 2011 %P 127-135 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_1_a8/ %G en %F IJAMCS_2011_21_1_a8
Raja, R.; Sakthivel, R.; Anthoni, S. M.; Kim, H. Stability of impulsive Hopfield neural networks with Markovian switching and time-varying delays. International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 1, pp. 127-135. http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_1_a8/
[1] Balasubramaniam, P., Lakshmanan, S. and Rakkiyappan, R. (2009). Delay-interval dependent robust stability criteria for stochastic neural networks with linear fractional uncertainties, Neurocomputing 72(16-18): 3675-3682.
[2] Balasubramaniam, P. and Rakkiyappan, R. (2009). Delaydependent robust stability analysis of uncertain stochastic neural networks with discrete interval and distributed time varying delays, Neurocomputing 72(13-15): 3231-3237.
[3] Cichocki, A. and Unbehauen, R. (1993). Neural Networks for Optimization and Signal Processing, Wiley, Chichester.
[4] Dong, M., Zhang, H. and Wang, Y. (2009). Dynamic analysis of impulsive stochastic Cohen-Grossberg neural networks with Markovian jumping and mixed time delays, Neurocomputing 72(7-9): 1999-2004.
[5] Gu, K., Kharitonov, V. and Chen, J. (2003). Stability of Time-Delay Systems, Birkhäuser, Boston, MA.
[6] Haykin, S. (1998). Neural Networks: A Comprehensive Foundation, Prentice Hall, Upper Saddle River, NJ.
[7] Li, D., Yang, D., Wang, H., Zhang, X. and Wang, S. (2009). Asymptotic stability of multidelayed cellular neural networks with impulsive effects, Physica A 388(2-3): 218-224.
[8] Li, H., Chen, B., Zhou, Q. and Liz, C. (2008). Robust exponential stability for delayed uncertain hopfield neural networks with Markovian jumping parameters, Physica A 372(30): 4996-5003.
[9] Liu, H., Zhao, L., Zhang, Z. and Ou, Y. (2009). Stochastic stability of Markovian jumping Hopfield neural networks with constant and distributed delays, Neurocomputing 72(16-18): 3669-3674.
[10] Lou, X. and Cui, B. (2009). Stochastic stability analysis for delayed neural networks of neutral type with Markovian jump parameters, Chaos, Solitons Fractals 39(5): 2188-2197.
[11] Mao, X. (2002). Exponential stability of stochastic delay interval systems with Markovian switching, IEEE Transactions on Automatic Control 47(10): 1604-1612.
[12] Rakkiyappan, R., Balasubramaniam, P. and Cao, J. (2010). Global exponential stability results for neutral-type impulsive neural networks, Nonlinear Analysis: Real World Applications 11(1): 122-130.
[13] Shi, P., Boukas, E. and Shi, Y. (2003). On stochastic stabilization of discrete-time Markovian jump systems with delay in state, Stochastic Analysis and Applications 21(1): 935-951.
[14] Singh, V. (2007). On global robust stability of interval Hopfield neural networks with delay, Chaos, Solitons Fractals 33(4): 1183-1188.
[15] Song, Q. and Wang, Z. (2008). Stability analysis of impulsive stochastic Cohen-Grossberg neural networks with mixed time delays, Physica A 387(13): 3314-3326.
[16] Song, Q. and Zhang, J. (2008). Global exponential stability of impulsive Cohen-Grossberg neural network with time-varying delays, Nonlinear Analysis: Real World Applications 9(2): 500-510.
[17] Wang, Z., Liu, Y., Yu, L. and Liu, X. (2006). Exponential stability of delayed recurrent neural networks with Markovian jumping parameters, Physics Letters A 356(4-5): 346-352.
[18] Yuan, C. G. and Lygeros, J. (2005). Stabilization of a class of stochastic differential equations with Markovian switching, Systems and Control Letters 54(9): 819-833.
[19] Zhang, H. and Wang, Y. (2008). Stability analysis of Markovian jumping stochastic Cohen-Grossberg neural networks with mixed time delays, IEEE Transactions on Neural Networks 19(2): 366-370.
[20] Zhang, Y. and Sun, J. T. (2005). Stability of impulsive neural networks with time delays, Physics Letters A 348(1-2): 44-50.
[21] Zhou, Q. and Wan, L. (2008). Exponential stability of stochastic delayed Hopfield neural networks, Applied Mathematics and Computation 199(1): 84-89.