Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2011_21_1_a14, author = {Fr\k{a}ckiewicz, M. and Palus, H.}, title = {KHM clustering technique as a segmentation method for endoscopic colour images}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {203--209}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_1_a14/} }
TY - JOUR AU - Frąckiewicz, M. AU - Palus, H. TI - KHM clustering technique as a segmentation method for endoscopic colour images JO - International Journal of Applied Mathematics and Computer Science PY - 2011 SP - 203 EP - 209 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_1_a14/ LA - en ID - IJAMCS_2011_21_1_a14 ER -
%0 Journal Article %A Frąckiewicz, M. %A Palus, H. %T KHM clustering technique as a segmentation method for endoscopic colour images %J International Journal of Applied Mathematics and Computer Science %D 2011 %P 203-209 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_1_a14/ %G en %F IJAMCS_2011_21_1_a14
Frąckiewicz, M.; Palus, H. KHM clustering technique as a segmentation method for endoscopic colour images. International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 1, pp. 203-209. http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_1_a14/
[1] Bezdek, J. C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms, Kluwer Academic Publishers, Norwell, MA.
[2] Borsotti, M., Campadelli, P. and Schettini, R. (1998). Quantitative evaluation of color image segmentation results, Pattern Recognition Letters 19(8): 741-747.
[3] Cheng, H., Jiang, X., Sun, Y. and Wang, J. (2001). Color image segmentation: Advances and prospects, Pattern Recognition 34(12): 2259-2281.
[4] Frąckiewicz, M. and Palus, H. (2009a). Initialization methods for clustering in colour image quantization, Proceedings of the 7th Conference on Computer Methods and Systems (CMS'09), Cracow, Poland, pp. 469-472.
[5] Frąckiewicz, M. and Palus, H. (2009b). KM and KHM clustering techniques: Computing acceleration by multithread programming, Proceedings of the 7th Conference on Computer Methods and Systems (CMS'09), Cracow, Poland, pp. 333-338.
[6] Hamerly, G. J. (2003). Learning Structure and Concepts in Data through Data Clustering, Ph.D. thesis, University of California, San Diego, CA.
[7] Linde, Y., Buzo, A. and Gray, R. (1980). An algorithm for vector quantizer design, IEEE Transactions on Communications 28(1): 84-95.
[8] Lloyd, S. (1982). Least squares quantization in PCM, IEEE Transactions on Information Theory 28(2): 129-137.
[9] MacQuenn, J. (1967). Some methods for classification and analysis of multivariate observations, Proceedings of the 5th Berkeley Symposium on Mathematics, Statistics, and Probabilities, Berkeley CA, USA, pp. 281-297.
[10] Palus, H. (2006). Color image segmentation: Selected techniques, in R. Lukac and K. Plataniotis (Eds.), Color Image Processing: Methods and Applications, CRC Press, Boca Raton, FL, pp. 103-108.
[11] Zhang, B. (2000). Generalized k-harmonic means-Boosting in unsupervised learning, Technical Report TR HPL-2000-137, Hewlett Packard Labs, Palo Alto, CA.
[12] Zhang, B., Hsu, M. and Dayal, U. (1999). K-harmonic means-Data clustering algorithm, Technical Report TR HPL-1999-124, Hewlett Packard Labs, Palo Alto, CA.