Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2011_21_1_a13, author = {Borys, D. and Szczucka-Borys, K. and Gorczewski, K.}, title = {System matrix computation for iterative reconstruction algorithms in {SPECT} based on direct measurements}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {193--202}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_1_a13/} }
TY - JOUR AU - Borys, D. AU - Szczucka-Borys, K. AU - Gorczewski, K. TI - System matrix computation for iterative reconstruction algorithms in SPECT based on direct measurements JO - International Journal of Applied Mathematics and Computer Science PY - 2011 SP - 193 EP - 202 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_1_a13/ LA - en ID - IJAMCS_2011_21_1_a13 ER -
%0 Journal Article %A Borys, D. %A Szczucka-Borys, K. %A Gorczewski, K. %T System matrix computation for iterative reconstruction algorithms in SPECT based on direct measurements %J International Journal of Applied Mathematics and Computer Science %D 2011 %P 193-202 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_1_a13/ %G en %F IJAMCS_2011_21_1_a13
Borys, D.; Szczucka-Borys, K.; Gorczewski, K. System matrix computation for iterative reconstruction algorithms in SPECT based on direct measurements. International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 1, pp. 193-202. http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_1_a13/
[1] Autret, D., Bitar, A., Ferrer, L., Lisbona, A. and Bardies, M. (2005). Monte Carlo modeling of gamma cameras for I-131 imaging in targeted radiotherapy, Cancer Biotherapy and Radiopharmaceuticals 20(1): 77-84.
[2] Borys, D., Panek, R., Gorczewski, K., d'Amico, A., Steinhof, K. and Psiuk-Maksymowicz, K. (2006). Evaluation of SPECT-CT image fusion quality control, Biocybernetics and Biomedical Engineering 26(4): 79-90.
[3] Bruyant, P. P. (2002). Analytic and iterative reconstruction algorithms in SPECT, Journal of Nuclear Medicine 43(10): 1343-1358.
[4] Chang, L. T. (1978). A method for attenuation correction in radionuclide computed tomography, IEEE Transactions on Nuclear Science 25(1): 638-643.
[5] Cherry, S. R., Sorenson, J. A. and Phelps, M. A. (2003). Physics in Nuclear Medicine, Saunders/Elsevier Science, Philadelphia, PA.
[6] Formiconi, A. R., Pupi, A. and Passeri, A. (1989). Compensation of spatial system response in SPECT with conjugate gradient reconstruction technique, Physics in Medicine and Biology 34(1): 69-84.
[7] Gilland, D. R., Jaszczak, R. J., Wang, H., Turkington, T. G., Greer, K. L. and Coleman, R. E. (1994). A 3D model of non-uniform attenuation and detector response for efficient iterative reconstruction in SPECT, Physics in Medicine and Biology 39(3): 547-561.
[8] Graham, L. S., Fahey, F. H., Madsen, M. T., van Aswegen, A. and Yester, M. V. (1995). Quantitation of SPECT performance: Report of Task Group 4, Nuclear Medicine Committee, Medical Physics 22(4): 401-409.
[9] Hubbell, J. H. and Seltzer, S. M. (n.d.). Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients, http://www.nist.gov/physlab/data/xraycoef/.
[10] Hudson, H. M. and Larkin, R. S. (1994). Accelerated image reconstruction using ordered subsets of projection data, IEEE Transactions on Medical Imaging 13(4): 601-609.
[11] Ichihara, T., Ogawa, K., Motomura, N., Kubo, A. and Hashimoto, S. (1993). Compton scatter compensation using the triple-energy window method for single- and dual-isotope SPECT, Journal of Nuclear Medicine 34(12): 2216-2221.
[12] Lazaro, D., El Bitar, Z., Breton, V., Hill, D. and Buvat, I. (2005). Fully 3DMonte Carlo reconstruction in SPECT: A feasibility study, Physics in Medicine and Biology 50(16): 3739-3754.
[13] Liang, Z., Turkington, T. G., Gilland, D. R., Jaszczak, R. J. and Coleman, R. E. (1992). Simultaneous compensation for attenuation, scatter and detector response for SPECT reconstruction in three dimensions, Physics in Medicine and Biology 37(3): 587-603.
[14] Loudos, G. K. (2008). An efficient analytical calculation of probability matrix in 2D SPECT, Computerized Medical Imaging and Graphics 32(2): 83-94.
[15] Rafecas,M., Böning, G., Pichler, B. J., Lorenz, E., Schwaiger, M. and Ziegler, S. I. (2004). Effect of noise in the probability matrix used for statistical reconstruction of PET data, IEEE Transactions on Nuclear Science 51(1): 149-156.
[16] Shepp, L. A. and Vardi, Y. (1982). Maximum likelihood reconstruction for emission tomography, IEEE Transactions on Medical Imaging 1(2): 113-122.
[17] Vandenberghe, S., D'Asseler, Y., Van de Walle, R., Kauppinen, T., Koole, M., Bouwens, L., Van Laere, K., Lemahieu, I. and Dierckx, R. A. (2001). Iterative reconstruction algorithms in nuclear medicine, Computerized Medical Imaging and Graphics 25(2): 105-111.
[18] Zaidi, H. (2006). Quantitative Analysis in Nuclear Medicine Imaging, Springer, New York, NY.
[19] Zeng, G. L. (2001). Image reconstruction-A tutorial, Computerized Medical Imaging and Graphics 25(2): 97-103.