Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2010_20_4_a3, author = {Bus{\l}owicz, M.}, title = {Robust stability of positive continuous-time linear systems with delays}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {665--670}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_4_a3/} }
TY - JOUR AU - Busłowicz, M. TI - Robust stability of positive continuous-time linear systems with delays JO - International Journal of Applied Mathematics and Computer Science PY - 2010 SP - 665 EP - 670 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_4_a3/ LA - en ID - IJAMCS_2010_20_4_a3 ER -
%0 Journal Article %A Busłowicz, M. %T Robust stability of positive continuous-time linear systems with delays %J International Journal of Applied Mathematics and Computer Science %D 2010 %P 665-670 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_4_a3/ %G en %F IJAMCS_2010_20_4_a3
Busłowicz, M. Robust stability of positive continuous-time linear systems with delays. International Journal of Applied Mathematics and Computer Science, Tome 20 (2010) no. 4, pp. 665-670. http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_4_a3/
[1] Bhattacharyya, S.P., Chapellat, H. and Keel, L.H. (1995). Robust Control: The Parametric Approach, Prentice Hall, New York, NY.
[2] Busłowicz, M. (2000). Robust Stability of Dynamical Linear Stationary Systems with Delays, Publishing Department of the Technical University of Białystok, Białystok, (in Polish).
[3] Busłowicz, M. (2008a). Simple stability conditions for linear positive discrete-time systems with delays, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(4): 325-328.
[4] Busłowicz, M. (2008b). Simple conditions for robust stability of linear positive discrete-time systems with one delay, Journal of Automation, Mobile Robotics and Intelligent Systems 2(2): 18-22.
[5] Farina, L. and Rinaldi, S. (2000). Positive Linear Systems; Theory and Applications, J. Wiley, NewYork, NY.
[6] Górecki, H. and Korytowski, A. (Eds.) (1993). Advances in Optimization and Stability Analysis of Dynamical Systems, Publishing Department of the University of Mining and Metallurgy, Cracow.
[7] Gu, K., Kharitonov, K.L. and Chen, J. (2003). Stability of Time-Delay Systems, Birkhäuser, Boston, MA.
[8] Gu, K. and Niculescu, S.I. (2006). Stability Analysis of Timedelay Systems: A Lyapunov Approach, Springer-Verlag, London.
[9] Hmamed, A., Benzaouia, A., Rami, M.A. and Tadeo, F. (2007). Positive stabilization of discrete-time systems with unknown delay and bounded controls, Proceedings of the European Control Conference, Kos, Greece, pp. 5616-5622, (paper ThD07.3).
[10] Kaczorek, T. (2002). Positive 1D and 2D Systems, Springer-Verlag, London.
[11] Kaczorek, T. (2009). Stability of positive continuous-time linear systems with delays, Bulletin of the Polish Academy of Sciences: Technical Sciences 57(4): 395-398.
[12] Niculescu, S.-I. (2001). Delay Effects on Stability. A Robust Control Approach, Springer-Verlag, London.
[13] Rami, M.A., Helmke, U. and Tadeo, F. (2007). Positive observation problem for linear positive systems, Proceedings of the Mediterranean Conference on Control and Automation, Athens, Greece, (paper T19-027).
[14] Wu,M., He.Y., She J.-A., and Liu G.-P. (2004). Delay-dependent criteria for robust stability of time-varying delay systems, Automatica 40(8): 1435-1439.