Robust stability of positive continuous-time linear systems with delays
International Journal of Applied Mathematics and Computer Science, Tome 20 (2010) no. 4, pp. 665-670.

Voir la notice de l'article provenant de la source Library of Science

The paper is devoted to the problem of robust stability of positive continuous-time linear systems with delays with structured perturbations of state matrices. Simple necessary and sufficient conditions for robust stability in the general case and in the case of systems with a linear uncertainty structure in two sub-cases: (i) a unity rank uncertainty structure and (ii) nonnegative perturbation matrices are established. The problems are illustrated with numerical examples.
Keywords: positive continuous-time linear system, delay, robust stability, linear uncertainty, interval system
Mots-clés : czas ciągły, system liniowy, opóźnienie, stabilność odporna, niepewność liniowa
@article{IJAMCS_2010_20_4_a3,
     author = {Bus{\l}owicz, M.},
     title = {Robust stability of positive continuous-time linear systems with delays},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {665--670},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_4_a3/}
}
TY  - JOUR
AU  - Busłowicz, M.
TI  - Robust stability of positive continuous-time linear systems with delays
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2010
SP  - 665
EP  - 670
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_4_a3/
LA  - en
ID  - IJAMCS_2010_20_4_a3
ER  - 
%0 Journal Article
%A Busłowicz, M.
%T Robust stability of positive continuous-time linear systems with delays
%J International Journal of Applied Mathematics and Computer Science
%D 2010
%P 665-670
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_4_a3/
%G en
%F IJAMCS_2010_20_4_a3
Busłowicz, M. Robust stability of positive continuous-time linear systems with delays. International Journal of Applied Mathematics and Computer Science, Tome 20 (2010) no. 4, pp. 665-670. http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_4_a3/

[1] Bhattacharyya, S.P., Chapellat, H. and Keel, L.H. (1995). Robust Control: The Parametric Approach, Prentice Hall, New York, NY.

[2] Busłowicz, M. (2000). Robust Stability of Dynamical Linear Stationary Systems with Delays, Publishing Department of the Technical University of Białystok, Białystok, (in Polish).

[3] Busłowicz, M. (2008a). Simple stability conditions for linear positive discrete-time systems with delays, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(4): 325-328.

[4] Busłowicz, M. (2008b). Simple conditions for robust stability of linear positive discrete-time systems with one delay, Journal of Automation, Mobile Robotics and Intelligent Systems 2(2): 18-22.

[5] Farina, L. and Rinaldi, S. (2000). Positive Linear Systems; Theory and Applications, J. Wiley, NewYork, NY.

[6] Górecki, H. and Korytowski, A. (Eds.) (1993). Advances in Optimization and Stability Analysis of Dynamical Systems, Publishing Department of the University of Mining and Metallurgy, Cracow.

[7] Gu, K., Kharitonov, K.L. and Chen, J. (2003). Stability of Time-Delay Systems, Birkhäuser, Boston, MA.

[8] Gu, K. and Niculescu, S.I. (2006). Stability Analysis of Timedelay Systems: A Lyapunov Approach, Springer-Verlag, London.

[9] Hmamed, A., Benzaouia, A., Rami, M.A. and Tadeo, F. (2007). Positive stabilization of discrete-time systems with unknown delay and bounded controls, Proceedings of the European Control Conference, Kos, Greece, pp. 5616-5622, (paper ThD07.3).

[10] Kaczorek, T. (2002). Positive 1D and 2D Systems, Springer-Verlag, London.

[11] Kaczorek, T. (2009). Stability of positive continuous-time linear systems with delays, Bulletin of the Polish Academy of Sciences: Technical Sciences 57(4): 395-398.

[12] Niculescu, S.-I. (2001). Delay Effects on Stability. A Robust Control Approach, Springer-Verlag, London.

[13] Rami, M.A., Helmke, U. and Tadeo, F. (2007). Positive observation problem for linear positive systems, Proceedings of the Mediterranean Conference on Control and Automation, Athens, Greece, (paper T19-027).

[14] Wu,M., He.Y., She J.-A., and Liu G.-P. (2004). Delay-dependent criteria for robust stability of time-varying delay systems, Automatica 40(8): 1435-1439.