Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2010_20_2_a3, author = {Bandrowski, B. and Karczewska, A. and Rozmej, P.}, title = {Numerical solutions to integral equations equivalent to differential equations with fractional time}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {261--269}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_2_a3/} }
TY - JOUR AU - Bandrowski, B. AU - Karczewska, A. AU - Rozmej, P. TI - Numerical solutions to integral equations equivalent to differential equations with fractional time JO - International Journal of Applied Mathematics and Computer Science PY - 2010 SP - 261 EP - 269 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_2_a3/ LA - en ID - IJAMCS_2010_20_2_a3 ER -
%0 Journal Article %A Bandrowski, B. %A Karczewska, A. %A Rozmej, P. %T Numerical solutions to integral equations equivalent to differential equations with fractional time %J International Journal of Applied Mathematics and Computer Science %D 2010 %P 261-269 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_2_a3/ %G en %F IJAMCS_2010_20_2_a3
Bandrowski, B.; Karczewska, A.; Rozmej, P. Numerical solutions to integral equations equivalent to differential equations with fractional time. International Journal of Applied Mathematics and Computer Science, Tome 20 (2010) no. 2, pp. 261-269. http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_2_a3/
[1] Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C. and der Vorst, H.V. (1994). Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition, SIAM, Philadelphia, PA.
[2] Bazhlekova, E. (2001). Fractional Evolution Equations in Banach Space, Ph.D. dissertation, Eindhoven University of Technology, Eindhoven.
[3] Ciesielski, M. and Leszczyński, J. (2006). Numerical treatment of an initial-boundary value problem for fractional partial differential equations, Signal Processing 86(10): 2619-2631.
[4] Fujita, Y. (1990). Integrodifferential equation which interpolates the heat equation and the wave equation, Osaka Journal of Mathematics 27(2): 309-321.
[5] Gambin, Y., Massiera, G., Ramos, L., Ligoure, C. and Urbach, W. (2005). Bounded step superdiffusion in an oriented hexagonal phase, Physical Review Letters 94(11): 110602.
[6] Goychuk, I., Heinsalu, E., Patriarca, M., Schmid, G. and Hänggi, P. (2006). Current and universal scaling in anomalous transport, Physical Review E 73(2): 020101'(R)'.
[7] Guermah, S., Djennoune, S. and Betteyeb, M. (2008). Controllability and observability of linear discrete-time fractional-order systems, International Journal of Applied Mathematics and Computer Science 18(2): 213-222, DOI:10.2478/v10006-008-0019-6.
[8] Heinsalu, E., Patriarca, M., Goychuk, I. and Hänggi, P. (2009). Fractional Fokker-Planck subdiffusion in alternating fields, Physical Review E 79(4): 041137.
[9] Heinsalu, E., Patriarca, M., Goychuk, I., Schmid, G. and Hänggi, P. (2006). Fokker-Planck dynamics: Numerical algorithm and simulations, Physical Review E 73(4): 046133.
[10] Kaczorek, T. (2008). Fractional positive continuous-time linear systems and their reachability, International Journal of Applied Mathematics and Computer Science 18(2): 223-228, DOI: 10.2478/v10006-008-0020-0.
[11] Kou, S. and Sunney Xie, X. (2004). Generalized Langevin equation with fractional Gaussian noise: Subdiffusion within a single protein molecule, Physical Review Letters 93(18): 180603.
[12] Labeyrie, G., Vaujour, E., Müller, C., Delande, D., Miniatura, C., Wilkowski, D. and Kaiser, R. (2003). Slow diffusion of light in a cold atomic cloud, Physical Review Letters 91(22): 223904.
[13] Meltzer, R. and Klafter, J. (2000). The random walk's guide to anomalous diffusion: A fractional dynamics approach, Physics Reports 339(1): 1-77.
[14] Ratynskaia, S., Rypdal, K., Knapek, C., Kharpak, S., Milovanov, A., Ivlev, A., Rasmussen, J. and Morfill, G. (2006). Superdiffusion and viscoelastic vortex flows in a two dimensional complex plasma, Physical Review Letters 96(10): 105010.
[15] Rozmej, P. and Karczewska, A. (2005). Numerical solutions to integrodifferential equations which interpolate heat and wave equations, International Journal on Differential Equations and Applications 10(1): 15-27.
[16] Saad, Y. and Schultz, M. (1986). GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing 7(3): 856-869.
[17] Schneider,W. andWyss,W. (1989). Fractional diffusion and wave equations, Journal of Mathematical Physics 30(4): 134-144.
[18] Van der Vorst, H. (1992). Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing 13(2): 631-644.