Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2010_20_1_a5, author = {Kaczorek, T. and Rogowski, K.}, title = {Positivity and stabilization of fractional {2D} linear systems described by the {Roesser} model}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {85--92}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_1_a5/} }
TY - JOUR AU - Kaczorek, T. AU - Rogowski, K. TI - Positivity and stabilization of fractional 2D linear systems described by the Roesser model JO - International Journal of Applied Mathematics and Computer Science PY - 2010 SP - 85 EP - 92 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_1_a5/ LA - en ID - IJAMCS_2010_20_1_a5 ER -
%0 Journal Article %A Kaczorek, T. %A Rogowski, K. %T Positivity and stabilization of fractional 2D linear systems described by the Roesser model %J International Journal of Applied Mathematics and Computer Science %D 2010 %P 85-92 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_1_a5/ %G en %F IJAMCS_2010_20_1_a5
Kaczorek, T.; Rogowski, K. Positivity and stabilization of fractional 2D linear systems described by the Roesser model. International Journal of Applied Mathematics and Computer Science, Tome 20 (2010) no. 1, pp. 85-92. http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_1_a5/
[1] Bose, N. K. (1982). Applied Multidimensional Systems Theory, Van Nonstrand Reinhold Co., New York, NY.
[2] Bose, N. K. (1985). Multidimensional Systems Theory Progress, Directions and Open Problems, D. Reidel Publishing Co., Dodrecht.
[3] Busłowicz, M. (2008). Simple stability conditions for linear positive discrete-time systems with delays, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(4): 325-328.
[4] Busłowicz, M. and Kaczorek, T. (2009). Simple conditions for practical stability of positive fractional discrete-time linear systems, International Journal of Applied Mathematics and Computer Science 19(2): 263-269, DOI:10.2478/v10006-009-0022-6.
[5] Farina, E. and Rinaldi, S. (2000). Positive Linear Systems; Theory and Applications, J. Wiley, New York, NY.
[6] Fornasini, E. and Marchesini, G. (1976). State-space realization theory of two-dimensional filters, IEEE Transactions on Automatic Control AC-21(4): 484-491.
[7] Fornasini, E. and Marchesini, G. (1978). Double indexed dynamical systems, Mathematical Systems Theory 12(1): 59-72.
[8] Galkowski, K. (2001). State Space Realizations of Linear 2D Systems with Extensions to the General nD (n > 2) Case, Springer-Verlag, London.
[9] Kaczorek, T. (1985). Two-Dimensional Linear Systems, Springer-Verlag, London.
[10] Kaczorek, T. (1996). Reachability and controllability of nonnegative 2D Roesser type models, Bulletin of the Polish Academy of Sciences: Technical Sciences 44(4): 405-410.
[11] Kaczorek, T. (2001). Positive 1D and 2D Systems, Springer-Verlag, London.
[12] Kaczorek, T. (2005). Reachability and minimum energy control of positive 2D systems with delays, Control and Cybernetics 34(2): 411-423.
[13] Kaczorek, T. (2007). Reachability and controllability to zero of positive fractional discrete-time systems, Machine Intelligence and Robotic Control 6(4): 139-143.
[14] Kaczorek, T. (2008a). Asymptotic stability of positive 1D and 2D linear systems, in K. Malinowski and L. Rutkowski (Eds), Recent Advances in Control and Automation, Akademicka Oficyna Wydawnicza EXIT, Warsaw, pp. 41-52.
[15] Kaczorek, T. (2008b). Asymptotic stability of positive 2D linear systems, Proceedings of the 13th Scientific Conference on Computer Applications in Electrical Engineering, Poznań, Poland, pp. 1-5.
[16] Kaczorek, T. (2008c). Fractional 2D linear systems, Journal of Automation, Mobile Robotics Intelligent Systems 2(2): 5-9.
[17] Kaczorek, T. (2008d). Positive different orders fractional 2D linear systems, Acta Mechanica et Automatica 2(2): 51-58.
[18] Kaczorek, T. (2009a). LMI approach to stability of 2D positive systems, Multidimensional Systems and Signal Processing 20(1): 39-54.
[19] Kaczorek, T. (2009b). Positive 2D fractional linear systems, International Journal for Computation and Mathematics in Electrical and Electronic Engineering, COMPEL 28(2): 341-352.
[20] Kaczorek, T. (2009c). Positivity and stabilization of 2D linear systems, Discussiones Mathematicae, Differential Inclusions, Control and Optimization 29(1): 43-52.
[21] Kaczorek, T. (2009d). Stabilization of fractional discrete-time linear systems using state feedbacks, Proceedings of the LogiTrans Conference, Szczyrk, Poland, pp. 2-9.
[22] Kurek, J. (1985). The general state-space model for a two dimensional linear digital systems, IEEE Transactions on Automatic Control AC-30(2): 600-602.
[23] Miller, K. S. and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations, Willey, New York, NY.
[24] Nashimoto, K. (1984). Fractional Calculus, Descartes Press, Koriyama.
[25] Oldham, K. B. and Spanier, J. (1974). The Fractional Calculus, Academic Press, New York, NY.
[26] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego, CA.
[27] Roesser, R. (1975). A discrete state-space model for linear image processing, IEEE Transactions on Automatic Control AC-20(1): 1-10.
[28] Twardy, M. (2007). An LMI approach to checking stability of 2D positive systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 55(4): 385-395.
[29] Valcher, M. E. (1997). On the internal stability and asymptotic behavior of 2D positive systems, IEEE Transactions on Circuits and Systems-I 44(7): 602-613.