Positivity and stabilization of fractional 2D linear systems described by the Roesser model
International Journal of Applied Mathematics and Computer Science, Tome 20 (2010) no. 1, pp. 85-92.

Voir la notice de l'article provenant de la source Library of Science

A new class of fractional 2D linear discrete-time systems is introduced. The fractional difference definition is applied to each dimension of a 2D Roesser model. Solutions of these systems are derived using a 2D Z-transform. The classical Cayley-Hamilton theorem is extended to 2D fractional systems described by the Roesser model. Necessary and sufficient conditions for the positivity and stabilization by the state-feedback of fractional 2D linear systems are established. A procedure for the computation of a gain matrix is proposed and illustrated by a numerical example.
Keywords: positivity, stabilization, fractional systems, Roesser model, 2D systems
Mots-clés : dodatniość, stabilizacja, system ułamkowy, model Roessera, system 2D
@article{IJAMCS_2010_20_1_a5,
     author = {Kaczorek, T. and Rogowski, K.},
     title = {Positivity and stabilization of fractional {2D} linear systems described by the {Roesser} model},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {85--92},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_1_a5/}
}
TY  - JOUR
AU  - Kaczorek, T.
AU  - Rogowski, K.
TI  - Positivity and stabilization of fractional 2D linear systems described by the Roesser model
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2010
SP  - 85
EP  - 92
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_1_a5/
LA  - en
ID  - IJAMCS_2010_20_1_a5
ER  - 
%0 Journal Article
%A Kaczorek, T.
%A Rogowski, K.
%T Positivity and stabilization of fractional 2D linear systems described by the Roesser model
%J International Journal of Applied Mathematics and Computer Science
%D 2010
%P 85-92
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_1_a5/
%G en
%F IJAMCS_2010_20_1_a5
Kaczorek, T.; Rogowski, K. Positivity and stabilization of fractional 2D linear systems described by the Roesser model. International Journal of Applied Mathematics and Computer Science, Tome 20 (2010) no. 1, pp. 85-92. http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_1_a5/

[1] Bose, N. K. (1982). Applied Multidimensional Systems Theory, Van Nonstrand Reinhold Co., New York, NY.

[2] Bose, N. K. (1985). Multidimensional Systems Theory Progress, Directions and Open Problems, D. Reidel Publishing Co., Dodrecht.

[3] Busłowicz, M. (2008). Simple stability conditions for linear positive discrete-time systems with delays, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(4): 325-328.

[4] Busłowicz, M. and Kaczorek, T. (2009). Simple conditions for practical stability of positive fractional discrete-time linear systems, International Journal of Applied Mathematics and Computer Science 19(2): 263-269, DOI:10.2478/v10006-009-0022-6.

[5] Farina, E. and Rinaldi, S. (2000). Positive Linear Systems; Theory and Applications, J. Wiley, New York, NY.

[6] Fornasini, E. and Marchesini, G. (1976). State-space realization theory of two-dimensional filters, IEEE Transactions on Automatic Control AC-21(4): 484-491.

[7] Fornasini, E. and Marchesini, G. (1978). Double indexed dynamical systems, Mathematical Systems Theory 12(1): 59-72.

[8] Galkowski, K. (2001). State Space Realizations of Linear 2D Systems with Extensions to the General nD (n > 2) Case, Springer-Verlag, London.

[9] Kaczorek, T. (1985). Two-Dimensional Linear Systems, Springer-Verlag, London.

[10] Kaczorek, T. (1996). Reachability and controllability of nonnegative 2D Roesser type models, Bulletin of the Polish Academy of Sciences: Technical Sciences 44(4): 405-410.

[11] Kaczorek, T. (2001). Positive 1D and 2D Systems, Springer-Verlag, London.

[12] Kaczorek, T. (2005). Reachability and minimum energy control of positive 2D systems with delays, Control and Cybernetics 34(2): 411-423.

[13] Kaczorek, T. (2007). Reachability and controllability to zero of positive fractional discrete-time systems, Machine Intelligence and Robotic Control 6(4): 139-143.

[14] Kaczorek, T. (2008a). Asymptotic stability of positive 1D and 2D linear systems, in K. Malinowski and L. Rutkowski (Eds), Recent Advances in Control and Automation, Akademicka Oficyna Wydawnicza EXIT, Warsaw, pp. 41-52.

[15] Kaczorek, T. (2008b). Asymptotic stability of positive 2D linear systems, Proceedings of the 13th Scientific Conference on Computer Applications in Electrical Engineering, Poznań, Poland, pp. 1-5.

[16] Kaczorek, T. (2008c). Fractional 2D linear systems, Journal of Automation, Mobile Robotics Intelligent Systems 2(2): 5-9.

[17] Kaczorek, T. (2008d). Positive different orders fractional 2D linear systems, Acta Mechanica et Automatica 2(2): 51-58.

[18] Kaczorek, T. (2009a). LMI approach to stability of 2D positive systems, Multidimensional Systems and Signal Processing 20(1): 39-54.

[19] Kaczorek, T. (2009b). Positive 2D fractional linear systems, International Journal for Computation and Mathematics in Electrical and Electronic Engineering, COMPEL 28(2): 341-352.

[20] Kaczorek, T. (2009c). Positivity and stabilization of 2D linear systems, Discussiones Mathematicae, Differential Inclusions, Control and Optimization 29(1): 43-52.

[21] Kaczorek, T. (2009d). Stabilization of fractional discrete-time linear systems using state feedbacks, Proceedings of the LogiTrans Conference, Szczyrk, Poland, pp. 2-9.

[22] Kurek, J. (1985). The general state-space model for a two dimensional linear digital systems, IEEE Transactions on Automatic Control AC-30(2): 600-602.

[23] Miller, K. S. and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations, Willey, New York, NY.

[24] Nashimoto, K. (1984). Fractional Calculus, Descartes Press, Koriyama.

[25] Oldham, K. B. and Spanier, J. (1974). The Fractional Calculus, Academic Press, New York, NY.

[26] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego, CA.

[27] Roesser, R. (1975). A discrete state-space model for linear image processing, IEEE Transactions on Automatic Control AC-20(1): 1-10.

[28] Twardy, M. (2007). An LMI approach to checking stability of 2D positive systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 55(4): 385-395.

[29] Valcher, M. E. (1997). On the internal stability and asymptotic behavior of 2D positive systems, IEEE Transactions on Circuits and Systems-I 44(7): 602-613.