Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2009_19_4_a9, author = {Dong, R. and Tan, Q. and Tan, Y.}, title = {Recursive identification algorithm for dynamic systems with output backlash and its convergence}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {631--638}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a9/} }
TY - JOUR AU - Dong, R. AU - Tan, Q. AU - Tan, Y. TI - Recursive identification algorithm for dynamic systems with output backlash and its convergence JO - International Journal of Applied Mathematics and Computer Science PY - 2009 SP - 631 EP - 638 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a9/ LA - en ID - IJAMCS_2009_19_4_a9 ER -
%0 Journal Article %A Dong, R. %A Tan, Q. %A Tan, Y. %T Recursive identification algorithm for dynamic systems with output backlash and its convergence %J International Journal of Applied Mathematics and Computer Science %D 2009 %P 631-638 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a9/ %G en %F IJAMCS_2009_19_4_a9
Dong, R.; Tan, Q.; Tan, Y. Recursive identification algorithm for dynamic systems with output backlash and its convergence. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 4, pp. 631-638. http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a9/
[1] Boutayeb, M. and Darouach, M. (1995). Recursive identification method for MISO Wiener-Hammerstein model, IEEE Transactions on Automatic Control 40(2): 287-291.
[2] Campos, J., Lewis, F. L. and Selmic, R. (2000). Backlash compensation in discrete time nonlinear systems using dynamic inversion by neural networks, International Conference on Automation and Robotics Research, San Francisco, CA, USA, pp. 1289-1295.
[3] Celka, P., Bershad, N. J. and Vesin, J. M. (2001). Stochastic gradient identification of polynomial Wiener systems: Analysis and application, IEEE Transactions on Signal Processing 49(2): 301-313.
[4] Chandler, H. W., George, S. D., Liddle, J. and Nixon, S. A. (2000). Backlash: A feature of the cyclic deformation of ceramic pastes, Journal of the European Ceramic Society 20(11): 1699-1705.
[5] Chen, H. F. (2006). Recursive identification algorithms for Wiener model with discontinuous piecewise-linear linear function, IEEE Transactions on Automatic Control 51(3): 390-400.
[6] Fang, C. Z. (2004). System Identification, Qinghua University, Beijing, (in Chinese).
[7] Greblicki, W. (1998). Continuous-time Wiener system identification, IEEE Transactions on Automatic Control 43(10): 1488-1493.
[8] Greblicki, W. (2001). Recursive identification of Wiener systems, International Journal of Applied Mathematics and Computer Science 11(4): 977-991.
[9] Hu, X. L. and Chen, H. F. (2005). Strong consistence of recursive identification for Wiener systems, Automatica 41(11): 1905-1916.
[10] Ljung, L. (1977a). Analysis of recursive stochastic algorithms, IEEE Transactions on Automatic Control AC-22(4): 551-575.
[11] Ljung, L. (1977b). On positive real transfer functions and the convergence of some recursive schemes, IEEE Transactions on Automatic Control AC-22(4): 539-551.
[12] Nordin, M. and Gutman, P.-O. (2002). Controlling mechanical systems with backlash-A survey, Automatica 38(10): 1633-1649.
[13] Pearson, R. K. and Pottmann, M. (2000). Gray-box identification of block-oriented nonlinear models, Journal of Process Control 10(4): 301-315.
[14] Selmic, R. R. and Lewis, F. L. (2001). Neural net backlash compensation with Hebbian tuning using dynamic inversion, Automatica 37(8): 1269-1277.
[15] Toyozawa, Y., Kashiwag, H. and Harada, H. (2004). Identification of Volterra kernels of nonlinear system having backlash type nonlinearity, 30th Annual Conference of the IEEE Industrial Electronics Society, Busan, Korea, pp. 2798-2802.
[16] Voros, J. (1995). Identification of nonlinear dynamic system using extended Hammerstein and Wiener models, Control-Theory Advanced Technology 10(4): 1203-1212.
[17] Voros, J. (2001). Parameter identification of Wiener systems with discontinuous nonlinearities, System and Control Letters 44(5): 363-372.
[18] Wigren, T. (1997). Circle criteria in recursive identification, IEEE Transactions on Automatic Control 42(7): 975-979.