Recursive identification algorithm for dynamic systems with output backlash and its convergence
International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 4, pp. 631-638.

Voir la notice de l'article provenant de la source Library of Science

This paper proposes a recursive identification method for systems with output backlash that can be described by a pseudo-Wiener model. In this method, a novel description of the nonlinear part of the system, i.e., backlash, is developed. In this case, the nonlinear system is decomposed into a piecewise linearized model. Then, a modified recursive general identification algorithm (MRGIA) is employed to estimate the parameters of the proposed model. Furthermore, the convergence of the MRGIA for the pseudo-Wiener system with backlash is analysed. Finally, a numerical example is presented.
Keywords: nonlinear system, backlash, recursive identification, pseudo-Wiener model
Mots-clés : system nieliniowy, luz, identyfikacja rekurencyjna
@article{IJAMCS_2009_19_4_a9,
     author = {Dong, R. and Tan, Q. and Tan, Y.},
     title = {Recursive identification algorithm for dynamic systems with output backlash and its convergence},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {631--638},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a9/}
}
TY  - JOUR
AU  - Dong, R.
AU  - Tan, Q.
AU  - Tan, Y.
TI  - Recursive identification algorithm for dynamic systems with output backlash and its convergence
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2009
SP  - 631
EP  - 638
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a9/
LA  - en
ID  - IJAMCS_2009_19_4_a9
ER  - 
%0 Journal Article
%A Dong, R.
%A Tan, Q.
%A Tan, Y.
%T Recursive identification algorithm for dynamic systems with output backlash and its convergence
%J International Journal of Applied Mathematics and Computer Science
%D 2009
%P 631-638
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a9/
%G en
%F IJAMCS_2009_19_4_a9
Dong, R.; Tan, Q.; Tan, Y. Recursive identification algorithm for dynamic systems with output backlash and its convergence. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 4, pp. 631-638. http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a9/

[1] Boutayeb, M. and Darouach, M. (1995). Recursive identification method for MISO Wiener-Hammerstein model, IEEE Transactions on Automatic Control 40(2): 287-291.

[2] Campos, J., Lewis, F. L. and Selmic, R. (2000). Backlash compensation in discrete time nonlinear systems using dynamic inversion by neural networks, International Conference on Automation and Robotics Research, San Francisco, CA, USA, pp. 1289-1295.

[3] Celka, P., Bershad, N. J. and Vesin, J. M. (2001). Stochastic gradient identification of polynomial Wiener systems: Analysis and application, IEEE Transactions on Signal Processing 49(2): 301-313.

[4] Chandler, H. W., George, S. D., Liddle, J. and Nixon, S. A. (2000). Backlash: A feature of the cyclic deformation of ceramic pastes, Journal of the European Ceramic Society 20(11): 1699-1705.

[5] Chen, H. F. (2006). Recursive identification algorithms for Wiener model with discontinuous piecewise-linear linear function, IEEE Transactions on Automatic Control 51(3): 390-400.

[6] Fang, C. Z. (2004). System Identification, Qinghua University, Beijing, (in Chinese).

[7] Greblicki, W. (1998). Continuous-time Wiener system identification, IEEE Transactions on Automatic Control 43(10): 1488-1493.

[8] Greblicki, W. (2001). Recursive identification of Wiener systems, International Journal of Applied Mathematics and Computer Science 11(4): 977-991.

[9] Hu, X. L. and Chen, H. F. (2005). Strong consistence of recursive identification for Wiener systems, Automatica 41(11): 1905-1916.

[10] Ljung, L. (1977a). Analysis of recursive stochastic algorithms, IEEE Transactions on Automatic Control AC-22(4): 551-575.

[11] Ljung, L. (1977b). On positive real transfer functions and the convergence of some recursive schemes, IEEE Transactions on Automatic Control AC-22(4): 539-551.

[12] Nordin, M. and Gutman, P.-O. (2002). Controlling mechanical systems with backlash-A survey, Automatica 38(10): 1633-1649.

[13] Pearson, R. K. and Pottmann, M. (2000). Gray-box identification of block-oriented nonlinear models, Journal of Process Control 10(4): 301-315.

[14] Selmic, R. R. and Lewis, F. L. (2001). Neural net backlash compensation with Hebbian tuning using dynamic inversion, Automatica 37(8): 1269-1277.

[15] Toyozawa, Y., Kashiwag, H. and Harada, H. (2004). Identification of Volterra kernels of nonlinear system having backlash type nonlinearity, 30th Annual Conference of the IEEE Industrial Electronics Society, Busan, Korea, pp. 2798-2802.

[16] Voros, J. (1995). Identification of nonlinear dynamic system using extended Hammerstein and Wiener models, Control-Theory Advanced Technology 10(4): 1203-1212.

[17] Voros, J. (2001). Parameter identification of Wiener systems with discontinuous nonlinearities, System and Control Letters 44(5): 363-372.

[18] Wigren, T. (1997). Circle criteria in recursive identification, IEEE Transactions on Automatic Control 42(7): 975-979.