Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2009_19_4_a5, author = {Sakthivel, R.}, title = {Controllability of nonlinear impulsive {Ito} type stochastic systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {589--595}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a5/} }
TY - JOUR AU - Sakthivel, R. TI - Controllability of nonlinear impulsive Ito type stochastic systems JO - International Journal of Applied Mathematics and Computer Science PY - 2009 SP - 589 EP - 595 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a5/ LA - en ID - IJAMCS_2009_19_4_a5 ER -
%0 Journal Article %A Sakthivel, R. %T Controllability of nonlinear impulsive Ito type stochastic systems %J International Journal of Applied Mathematics and Computer Science %D 2009 %P 589-595 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a5/ %G en %F IJAMCS_2009_19_4_a5
Sakthivel, R. Controllability of nonlinear impulsive Ito type stochastic systems. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 4, pp. 589-595. http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a5/
[1] Alotaibi, S., Sen, M., Goodwine, B. and Yang, K. T. (2004). Controllability of cross-flow heat exchangers, International Journal of Heat and Mass Transfer 47(5): 913-924.
[2] Balachandran, K. and Sakthivel, R. (2001). Controllability of integrodifferential systems in Banach spaces, Applied Mathematics and Computation 118(1): 63-71.
[3] Balasubramaniam, P. and Dauer, J. P. (2003). Controllability of semilinear stochastic evolution equations with time delays, Publicationes Mathematicae Debrecen 63(3): 279-291.
[4] Bashirov, A. E. and Mahmudov, N. I. (1999). On concepts of controllability for deterministic and stochastic systems, SIAM Journal on Control and Optimization 37(6): 1808-1821.
[5] Keck, D. N. and McKibben, M. A. (2006). Abstract semilinear stochastic Ito Volterra integrodifferential equations, Journal of Applied Mathematics and Stochastic Analysis 20(2): 1-22.
[6] Klamka, J. (1991). Controllability of Dynamical Systems, Kluwer, Dordrecht.
[7] Klamka, J. (2000). Schauders fixed-point theorem in nonlinear controllability problems, Control and Cybernetics 29(1): 153-165.
[8] Klamka, J. (2007a). Stochastic controllability of linear systems with delay in control, Bulletin of the Polish Academy of Sciences: Technical Sciences 55(1): 23-29.
[9] Klamka, J. (2007b). Stochastic controllability of linear systems with state delays, International Journal of Applied Mathematics and Computer Science 17(1): 5-13.
[10] Klamka, J. and Socha, L. (1977). Some remarks about stochastic controllability, IEEE Transactions on Automatic Control 22(5): 880-881.
[11] Klamka, J. and Socha, L. (1980). Some remarks about stochastic controllability for delayed linear systems, International Journal of Control 32(3): 561-566.
[12] Liu, B., Liu, X. Z. and Liao, X. X. (2007). Existence and uniqueness and stability of solutions for stochastic impulsive systems, Journal of Systems Science and Complexity 20(1): 149-158.
[13] Mahmudov, N. I. (2001). Controllability of linear stochastic systems, IEEE Transactions on Automatic Control 46(1): 724-731.
[14] Mahmudov, N. I. and Zorlu, S. (2003). Controllability of nonlinear stochastic systems, International Journal of Control 76(2): 95-104.
[15] Mahmudov, N. I. and Zorlu, S. (2005). Controllability of semilinear stochastic systems, International Journal of Control 78(13): 997-1004.
[16] Mao, X. (1997). Stochastic Differential Equations and Applications, Elis Horwood, Chichester.
[17] Murge, M. G. and Pachpatte, B. G. (1986a). Explosion and asymptotic behavior of nonlinear Ito type stochastic integro-differential equations, Kodai Mathematical Journal 9(1): 1-18.
[18] Murge, M. G. and Pachpatte, B. G. (1986b). On generalized Ito type stochastic integral equation, Yokohama Mathematical Journal 34(1-2): 23-33.
[19] Rao, A. N. V. and Tsokos, C. P. (1995). Stability of impulsive stochastic differential systems, Dynamical Systems and Applications 4(4): 317-327.
[20] Respondek, J. (2005). Numerical approach to the non-linear diofantic equations with applications to the controllability of infinite dimensional dynamical systems, International Journal of Control 78(13): 1017-1030.
[21] Respondek, J. S. (2007). Numerical analysis of controllability of diffusive-convective system with limited manipulating variables, International Communications in Heat and Mass Transfer 34(8): 934-944.
[22] Respondek, J. S. (2008). Approximate controllability of infinite dimensional systems of the n-th order, International Journal of Applied Mathematics and Computer Science 18(2): 199-212.
[23] Sakthivel, R., Kim, J. H. and Mahmudov, N. I. (2006). On controllability of nonlinear stochastic systems, Reports on Mathematical Physics 58(3): 433-443.
[24] Samoilenko, A. M. and Perestyuk, N. A. (1995). Impulsive Differential Equations, World Scientific, Singapore.
[25] Sunahara, Y., Kabeuchi, T., Asad, Y., Aihara, S. and Kishino, K. (1974). On stochastic controllability for nonlinear systems, IEEE Transactions on Automatic Control 19(1): 49-54.
[26] Yang, Z., Xu, D. and Xiang, L. (2006). Exponential p-stability of impulsive stochastic differential equations with delays, Physics Letters A 359(2): 129-137.