On path following control of nonholonomic mobile manipulators
International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 4, pp. 561-574.

Voir la notice de l'article provenant de la source Library of Science

This paper describes the problem of designing control laws for path following robots, including two types of nonholonomic mobile manipulators. Due to a cascade structure of the motion equation, a backstepping procedure is used to achieve motion along a desired path. The control algorithm consists of two simultaneously working controllers: the kinematic controller, solving motion constraints, and the dynamic controller, preserving an appropriate coordination between both subsystems of a mobile manipulator, i.e. the mobile platform and the manipulating arm. A description of the nonholonomic subsystem relative to the desired path using the Frenet parametrization is the basis for formulating the path following problem and designing a kinematic control algorithm. In turn, the dynamic control algorithm is a modification of a passivity-based controller. Theoretical deliberations are illustrated with simulations.
Keywords: mobile manipulator, nonholonomic constraints, path following, Frenet parametrization
Mots-clés : manipulator ruchomy, więzy nieholonomiczne, śledzenie ścieżki, parametryzacja Freneta
@article{IJAMCS_2009_19_4_a3,
     author = {Mazur, A. and Szakiel, D.},
     title = {On path following control of nonholonomic mobile manipulators},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {561--574},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a3/}
}
TY  - JOUR
AU  - Mazur, A.
AU  - Szakiel, D.
TI  - On path following control of nonholonomic mobile manipulators
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2009
SP  - 561
EP  - 574
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a3/
LA  - en
ID  - IJAMCS_2009_19_4_a3
ER  - 
%0 Journal Article
%A Mazur, A.
%A Szakiel, D.
%T On path following control of nonholonomic mobile manipulators
%J International Journal of Applied Mathematics and Computer Science
%D 2009
%P 561-574
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a3/
%G en
%F IJAMCS_2009_19_4_a3
Mazur, A.; Szakiel, D. On path following control of nonholonomic mobile manipulators. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 4, pp. 561-574. http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a3/

[1] Canudas de Wit, C., Siciliano, B. and Bastin, G. (1996). Theory of Robot Control, Springer-Verlag, London.

[2] Chung, J., Velinsky, S. and Hess, R. (1998). Interaction control of a redundant mobile manipulator, International Journal of Robotics Research 17(12): 1302-1309.

[3] D'Andréa-Novel, B., Bastin, G. and Campion, G. (1991). Modelling and control of nonholonomic wheeled mobile robots, Proceedings of the IEEE International Conference on Robotics and Automation, Sacramento, CA, USA, pp. 1130-1135.

[4] Dong, W. (2002). On trajectory and force tracking control of constrained mobile manipulators with parameter uncertainty, Automatica 38(9): 1475-1484.

[5] Dulęba, I. (2000). Modeling and control of mobile manipulators, Proceedings of the 6th IFAC Symposium on Robot Control, SYROCO'00, Vienna, Austria, pp. 687-692.

[6] Fradkov, A., Miroshnik, I. and Nikiforov, V. (1999). Nonlinear and Adaptive Control of Complex Systems, Kluwer Academic Publishers, Dordrecht.

[7] Galicki, M. (2006). Adaptive control of kinematically redundant manipulator, Lecture Notes in Control and Information Sciences (335): 129-139.

[8] Hatano, M. and Obara, H. (2003). Stability evaluation for mobile manipulators using criteria based on reaction, Proceedings of the SICE Annual Conference, Fukui, Japan, pp. 2050-2055.

[9] Huang, Q., Sugano, S. and Tanie, K. (1998). Motion planning for a mobile manipulator considering stability and task constraints, Proceedings of the IEEE International Conference on Robotics and Automation, Leuven, Belgium, pp. 2192-2198.

[10] Khatib, O. (1999). Mobile manipulation: The robotic assistant, Journal on Robotics and Autononous Systems 26: 175-183.

[11] Krstić, M., Kanellakopoulos, I. and Kokotović, P. (1995). Nonlinear and Adaptive Control Design, J. Wiley and Sons, New York, NY.

[12] Li, Z., Ge, S. and Ming, A. (2007). Adaptive robust motion/force control of holonomic-constrained nonholonomic mobile manipulator, IEEE Transactions on System, Man and Cybernetics, Part B: Cybernetics 37(3): 607-617.

[13] Mazur, A. (2000). Comparative study of control algorithms for nonholonomic mobile manipulators, Technical Report SPR 38/00, Institute of Engineering Cybernetics, Wrocław University of Technology, http://sequoia.ict.pwr.wroc.pl/˜alicja,(in Polish).

[14] Mazur, A. (2004). Hybrid adaptive control laws solving a path following problem for nonholonomic mobile manipulators, International Journal of Control 77(15): 1297-1306.

[15] Nakamura, Y., Chung,W. and Sørdalen, O. J. (2001). Design and control of the nonholonomic manipulator, IEEE Transactions on Robotics and Automation 17(1): 48-59.

[16] Samson, C. (1995). Control of chained systems-Application to path following and time-varying point-stabilization of mobile robots, IEEE Transactions on Automatic Control 40(1): 147-158.

[17] Tan, J., Xi, N. and Wang, Y. (2003). Integrated task planning and control for mobile manipulators, International Journal of Robotics Research 22(5): 337-354.

[18] Tchoń, K. and Jakubiak, J. (2004). Acceleration-driven kinematics of mobile manipulators: An endogenous configuration space approach, in J. Lenarčič and C. Galletti (Eds.), On Advances in Robot Kinematics, Kluwer Academic Publishers, Dordrecht, pp. 469-476.

[19] Tchoń, K., Jakubiak, J. and Zadarnowska, K. (2004). Doubly nonholonomic mobile manipulators, Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, pp. 4590-4595.

[20] Yamamoto, Y. and Yun, X. (1994). Coordinating locomotion and manipulation of a mobile manipulator, IEEE Transactions on Automatic Control 39(6): 1326-1332.

[21] Yamamoto, Y. and Yun, X. (1996). Effect of the dynamic interaction on coordinated control of mobile manipulators, IEEE Transactions on Robotics and Automation 12(5): 816-824.