Trajectory tracking for a mobile robot with skid-slip compensation in the vector-field-orientation control system
International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 4, pp. 547-559.

Voir la notice de l'article provenant de la source Library of Science

The article is devoted to a motion control problem for a differentially driven mobile robot in the task of trajectory tracking in the presence of skid-slip effects. The kinematic control concept presented in the paper is the Vector Field Orientation (VFO) feedback approach with a nonlinear feed-forward skid-slip influence compensation scheme. The VFO control law guarantees asymptotic convergence of the position tracking error to zero in spite of the disturbing influence of skid-slip phenomena. The paper includes a control law design description, stability and convergence analysis of a closed-loop system, and practical verification of the proposed control concept. The experimental results illustrate control quality obtained on a laboratory setup equipped with vision feedback, where the Kalman filter algorithm was used in order to practically estimate skid-slip components.
Keywords: differentially driven mobile robot, skid-slip compensation, trajectory tracking, vector fields
Mots-clés : robot mobilny, śledzenie trajektorii, pole wektorowe
@article{IJAMCS_2009_19_4_a2,
     author = {Micha{\l}ek, M. and Dutkiewicz, P. and Kie{\l}czewski, M. and Pazderski, D.},
     title = {Trajectory tracking for a mobile robot with skid-slip compensation in the vector-field-orientation control system},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {547--559},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a2/}
}
TY  - JOUR
AU  - Michałek, M.
AU  - Dutkiewicz, P.
AU  - Kiełczewski, M.
AU  - Pazderski, D.
TI  - Trajectory tracking for a mobile robot with skid-slip compensation in the vector-field-orientation control system
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2009
SP  - 547
EP  - 559
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a2/
LA  - en
ID  - IJAMCS_2009_19_4_a2
ER  - 
%0 Journal Article
%A Michałek, M.
%A Dutkiewicz, P.
%A Kiełczewski, M.
%A Pazderski, D.
%T Trajectory tracking for a mobile robot with skid-slip compensation in the vector-field-orientation control system
%J International Journal of Applied Mathematics and Computer Science
%D 2009
%P 547-559
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a2/
%G en
%F IJAMCS_2009_19_4_a2
Michałek, M.; Dutkiewicz, P.; Kiełczewski, M.; Pazderski, D. Trajectory tracking for a mobile robot with skid-slip compensation in the vector-field-orientation control system. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 4, pp. 547-559. http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a2/

[1] Bar-Shalom, Y., Li, X. R. and Kirubarajan, T. (2001). Estimation with Applications to Tracking and Navigation, Wiley-Interscience, New York, NY.

[2] Corradini, M. L., Leo, T. and Orlando, G. (1999). Robust stabilization of a mobile robot violating the nonholonomic constraint via quasi-sliding modes, Proceedings of the American Control Conference, San Diego, CA, USA, pp. 3935-3939.

[3] Dixon, W. E., Dawson, D. M. and Zergeroglu, E. (2000). Tracking and regulation control of a mobile robot system with kinematic disturbances: A variable structure-like approach, Journal of Dynamic Systems, Measurement and Control 122(4): 616-623.

[4] Fukao, T., Miyasaka, S., Mori, K., Adachi, N. and Osuka, K. (2001). Active steering systems based on model reference adaptive nonlinear control, Proceedings of the IEEE Intelligent Transportation Systems Conference, Oakland, CA, USA, pp. 502-507.

[5] Khalil, H. K. (2002). Nonlinear Systems. 3rd Edn., Prentice-Hall, Upper Saddle River, NJ.

[6] Kiencke, U. and Nielsen, L. (2000). Automotive Control Systems, Springer-Verlag, Berlin.

[7] Lenain, R., Thuilot, B., Cariou, C. and Martinet, P. (2006). High accuracy path tracking for vehicles in presence od sliding: Application to farm vehicle automatic guidance for agricultural tasks, Autonomous Robots 21(1): 79-97.

[8] Leroquais, W. and dAndrea Novel, B. (1996). Modeling and control of wheeled mobile robots not satisfying ideal velocity constraints: the unicycle case, Proceedings of the 35th Conference on Decision and Control, Kobe, Japan, pp. 1437-1442.

[9] Lewis, A. D. (1999). When is a mechanical control system kinematic? Proceedings of the 38th Conference on Decision and Control, Phoenix, AZ, USA, pp. 1162-1167.

[10] Lhomme-Desages, D., Grand, C. and Guinot, J.-C. (2007). Trajectory control of a four-wheel skid-steering vehicle over soft terrain using physical interaction model, Proceedings of the IEEE International Conference on Robotics and Automation, Rome, Italy, pp. 1164-1169.

[11] Mi, C., Lin, H. and Zhang, Y. (2005). Iterative learning control of antilock braking of electric and hybrid vehicles, IEEE Transactions on Vehicular Technology 54(2): 486-494.

[12] Michałek, M. (2007). VFO control for mobile vehicles in the presence of skid phenomenon, Robot Motion and Control 2007, Lecture Notes in Control and Information Sciences, Vol. 360, Springer, pp. 57-66.

[13] Michałek,M. and Kozłowski, K. (2009). Vector-field-orientation feedback control method for a differentially-driven vehicle, IEEE Transactions on Control Systems Technology, DOI: 10.1109/TCST.2008.2010406, (in print).

[14] Motte, I. and Campion, G. (2000). A slow manifold approach for the control of mobile robots not satisfying the kinematic constraints, IEEE Transactions on Robotics and Automation 16(6): 875-880.

[15] Pacejka, H. B. (2002). Tyre and Vehicle Dynamics, Butterworth-Heinemann.

[16] Pazderski, D. and Kozłowski, K. (2008). Trajectory tracking control of skid-steering robot-Experimental validation, Proceedings of the 17th World Congress, International Federation of Automatic Control, Seoul, Korea, pp. 5377-5382.

[17] Peng, S.-T., Sheu, J.-J. and Chang, C.-C. (2004). On one approach to constraining wheel slip for the autonomus control of a 4ws/4wd, Proceedings of the International Conference on Control Applications, Taipei, Taiwan, pp. 1254-1259.

[18] Wang, D. and Low, C. B. (2008). Modeling and analysis of skidding and slipping in wheeled mobile robots: Control design perspective, IEEE Transactions on Robotics 24(3): 676-687.

[19] Wong, J. Y. (2001). Theory of Ground Vehicles, John Wiley Sons, Inc., Ottawa.

[20] Zong, Z., Zweiri, Y. H. and Seneviratne, L. D. (2006). Nonlinear observer for slip estimation of skid-steering vehicles, Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, FL, USA, pp. 1499-1504.