Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2009_19_4_a2, author = {Micha{\l}ek, M. and Dutkiewicz, P. and Kie{\l}czewski, M. and Pazderski, D.}, title = {Trajectory tracking for a mobile robot with skid-slip compensation in the vector-field-orientation control system}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {547--559}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a2/} }
TY - JOUR AU - Michałek, M. AU - Dutkiewicz, P. AU - Kiełczewski, M. AU - Pazderski, D. TI - Trajectory tracking for a mobile robot with skid-slip compensation in the vector-field-orientation control system JO - International Journal of Applied Mathematics and Computer Science PY - 2009 SP - 547 EP - 559 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a2/ LA - en ID - IJAMCS_2009_19_4_a2 ER -
%0 Journal Article %A Michałek, M. %A Dutkiewicz, P. %A Kiełczewski, M. %A Pazderski, D. %T Trajectory tracking for a mobile robot with skid-slip compensation in the vector-field-orientation control system %J International Journal of Applied Mathematics and Computer Science %D 2009 %P 547-559 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a2/ %G en %F IJAMCS_2009_19_4_a2
Michałek, M.; Dutkiewicz, P.; Kiełczewski, M.; Pazderski, D. Trajectory tracking for a mobile robot with skid-slip compensation in the vector-field-orientation control system. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 4, pp. 547-559. http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a2/
[1] Bar-Shalom, Y., Li, X. R. and Kirubarajan, T. (2001). Estimation with Applications to Tracking and Navigation, Wiley-Interscience, New York, NY.
[2] Corradini, M. L., Leo, T. and Orlando, G. (1999). Robust stabilization of a mobile robot violating the nonholonomic constraint via quasi-sliding modes, Proceedings of the American Control Conference, San Diego, CA, USA, pp. 3935-3939.
[3] Dixon, W. E., Dawson, D. M. and Zergeroglu, E. (2000). Tracking and regulation control of a mobile robot system with kinematic disturbances: A variable structure-like approach, Journal of Dynamic Systems, Measurement and Control 122(4): 616-623.
[4] Fukao, T., Miyasaka, S., Mori, K., Adachi, N. and Osuka, K. (2001). Active steering systems based on model reference adaptive nonlinear control, Proceedings of the IEEE Intelligent Transportation Systems Conference, Oakland, CA, USA, pp. 502-507.
[5] Khalil, H. K. (2002). Nonlinear Systems. 3rd Edn., Prentice-Hall, Upper Saddle River, NJ.
[6] Kiencke, U. and Nielsen, L. (2000). Automotive Control Systems, Springer-Verlag, Berlin.
[7] Lenain, R., Thuilot, B., Cariou, C. and Martinet, P. (2006). High accuracy path tracking for vehicles in presence od sliding: Application to farm vehicle automatic guidance for agricultural tasks, Autonomous Robots 21(1): 79-97.
[8] Leroquais, W. and dAndrea Novel, B. (1996). Modeling and control of wheeled mobile robots not satisfying ideal velocity constraints: the unicycle case, Proceedings of the 35th Conference on Decision and Control, Kobe, Japan, pp. 1437-1442.
[9] Lewis, A. D. (1999). When is a mechanical control system kinematic? Proceedings of the 38th Conference on Decision and Control, Phoenix, AZ, USA, pp. 1162-1167.
[10] Lhomme-Desages, D., Grand, C. and Guinot, J.-C. (2007). Trajectory control of a four-wheel skid-steering vehicle over soft terrain using physical interaction model, Proceedings of the IEEE International Conference on Robotics and Automation, Rome, Italy, pp. 1164-1169.
[11] Mi, C., Lin, H. and Zhang, Y. (2005). Iterative learning control of antilock braking of electric and hybrid vehicles, IEEE Transactions on Vehicular Technology 54(2): 486-494.
[12] Michałek, M. (2007). VFO control for mobile vehicles in the presence of skid phenomenon, Robot Motion and Control 2007, Lecture Notes in Control and Information Sciences, Vol. 360, Springer, pp. 57-66.
[13] Michałek,M. and Kozłowski, K. (2009). Vector-field-orientation feedback control method for a differentially-driven vehicle, IEEE Transactions on Control Systems Technology, DOI: 10.1109/TCST.2008.2010406, (in print).
[14] Motte, I. and Campion, G. (2000). A slow manifold approach for the control of mobile robots not satisfying the kinematic constraints, IEEE Transactions on Robotics and Automation 16(6): 875-880.
[15] Pacejka, H. B. (2002). Tyre and Vehicle Dynamics, Butterworth-Heinemann.
[16] Pazderski, D. and Kozłowski, K. (2008). Trajectory tracking control of skid-steering robot-Experimental validation, Proceedings of the 17th World Congress, International Federation of Automatic Control, Seoul, Korea, pp. 5377-5382.
[17] Peng, S.-T., Sheu, J.-J. and Chang, C.-C. (2004). On one approach to constraining wheel slip for the autonomus control of a 4ws/4wd, Proceedings of the International Conference on Control Applications, Taipei, Taiwan, pp. 1254-1259.
[18] Wang, D. and Low, C. B. (2008). Modeling and analysis of skidding and slipping in wheeled mobile robots: Control design perspective, IEEE Transactions on Robotics 24(3): 676-687.
[19] Wong, J. Y. (2001). Theory of Ground Vehicles, John Wiley Sons, Inc., Ottawa.
[20] Zong, Z., Zweiri, Y. H. and Seneviratne, L. D. (2006). Nonlinear observer for slip estimation of skid-steering vehicles, Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, FL, USA, pp. 1499-1504.