Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2009_19_4_a0, author = {Tcho\'n, K. and Karpi\'nska, J. and Janiak, M.}, title = {Approximation of {Jacobian} inverse kinematics algorithms}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {519--531}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a0/} }
TY - JOUR AU - Tchoń, K. AU - Karpińska, J. AU - Janiak, M. TI - Approximation of Jacobian inverse kinematics algorithms JO - International Journal of Applied Mathematics and Computer Science PY - 2009 SP - 519 EP - 531 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a0/ LA - en ID - IJAMCS_2009_19_4_a0 ER -
%0 Journal Article %A Tchoń, K. %A Karpińska, J. %A Janiak, M. %T Approximation of Jacobian inverse kinematics algorithms %J International Journal of Applied Mathematics and Computer Science %D 2009 %P 519-531 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a0/ %G en %F IJAMCS_2009_19_4_a0
Tchoń, K.; Karpińska, J.; Janiak, M. Approximation of Jacobian inverse kinematics algorithms. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 4, pp. 519-531. http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a0/
[1] Baillieul, J. (1985). Kinematic programming alternatives for redundant manipulators, Proceedings of the 1985 IEEE International Conference on Robotics and Automation, St. Louis, LO, USA, pp. 722-728.
[2] Chitour, Y. and and Sussmann, H. J. (1998). Motion planning using the continuation method, in J. Baillieul, S. S. Sastry and H. J. Sussmann (Eds), Essays on Mathematical Robotics, Springer-Verlag, New York, NY, pp. 91-125.
[3] Gelfand, I. M. and Fomin, S. V. (1963). Calculus of Variations, Prentice-Hall, Englewood Cliffs, NJ.
[4] Janiak, M. and Tchoń, K. (2008). Extended Jacobian inverse kinematics and approximation of distributions, in J. Lenarcic and Ph. Wenger (Eds), Advances in Robot Kinematics, Springer Science+Business Media, Berlin, pp. 137-146.
[5] Klein, Ch. A. and Huang, C. (1983). Review of the pseudoinverse control for use with kinematically redundant manipulators, IEEE Transactions on Systems, Man and Cybernetics 13(3): 245-250.
[6] Klein, Ch. A., Chu-Jenq, C. and Ahmed, Sh. (1995). A new formulation of the extended Jacobian method and its use in mapping algorithmic singularities for kinematically redundant manipulators, IEEE Transactions on Robotics and Automation 11(1): 50-55.
[7] Roberts, R. G. and Maciejewski, A. A. (1992). Nearest optimal repeatable control strategies for kinematically redundant manipulators, IEEE Transactions on Robotics and Automation 8(3): 327-337.
[8] Roberts, R. G. and Maciejewski, A. A. (1993). Repeatable generalized inverse control strategies for kinematically redundant manipulators, IEEE Transactions on Automatic Control 38(5): 689-699.
[9] Roberts, R. G. and Maciejewski, A. A. (1993). Singularities, stable surfaces, and the repeatable behavior of kinematically redundant manipulators, International Journal of Robotics Research 13(1): 207-213.
[10] Shamir, T. and Yomdin, Y. (1988). Repeatability of redundant manipulators: Mathematical solution of the problem, IEEE Transactions on Automatic Control 33(11): 1004-1009.
[11] Sluis,W. M., Banaszuk, A., Hauser, J. and Murray, R. M.(1996). A homotopy algorithm for approximating geometric distributions by integrable systems, Systems Control Letters 27(5): 285-291.
[12] Tchoń, K. (2002). Repeatability of inverse kinematics algorithms for mobile manipulators, IEEE Transactions on Automatic Control 47(8): 1376-1380.
[13] Tchoń, K. (2007). Continuation method in robotics, Proceedings of the 7th Conference on Computer Methods and Systems, Cracow, Poland, pp. 17-24.
[14] Tchoń, K. (2008). Optimal extended Jacobian inverse kinematics algorithms for robotic manipulators, IEEE Transactions on Robotics 28(6): 1440-1445.
[15] Tchoń, K. and Jakubiak, J. (2006). Extended Jacobian inverse kinematics algorithm for non-holonomic mobile robots, International Journal of Control 79(8): 895-909.