Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2009_19_3_a7, author = {T\"andl, M. and Stark, T. and Erol, N. E. and L\"oer, F. and Kecskem\'ethy, A.}, title = {An object-oriented approach to simulating human gait motion based on motion tracking}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {469--483}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_3_a7/} }
TY - JOUR AU - Tändl, M. AU - Stark, T. AU - Erol, N. E. AU - Löer, F. AU - Kecskeméthy, A. TI - An object-oriented approach to simulating human gait motion based on motion tracking JO - International Journal of Applied Mathematics and Computer Science PY - 2009 SP - 469 EP - 483 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_3_a7/ LA - en ID - IJAMCS_2009_19_3_a7 ER -
%0 Journal Article %A Tändl, M. %A Stark, T. %A Erol, N. E. %A Löer, F. %A Kecskeméthy, A. %T An object-oriented approach to simulating human gait motion based on motion tracking %J International Journal of Applied Mathematics and Computer Science %D 2009 %P 469-483 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_3_a7/ %G en %F IJAMCS_2009_19_3_a7
Tändl, M.; Stark, T.; Erol, N. E.; Löer, F.; Kecskeméthy, A. An object-oriented approach to simulating human gait motion based on motion tracking. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 3, pp. 469-483. http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_3_a7/
[1] Auer, E. and Luther, W. (2008). Numerical verification assessment in computational biomechanics, Proceedings of the Dagstuhl Seminar 08021: Numerical Validation in Current Hardware Architectures-From Embedded System to High-End Computational Grids, Dagstuhl Castle, Germany, Lecture Notes in Computer Science, Springer, Berlin/Heidelberg, pp.145-160.
[2] Barbour, N. and Schmidt, G. (2001). Inertial sensor technology trends, IEEE Sensors Journal 1(4):332-339.
[3] Cerveri, P., Pedotti, A. and Ferrigno, G. (2005). Kinematical models to reduce the effect of skin artifacts on marker based human motion estimation, Journal of Biomechanics 38(11): 2228-2236.
[4] Cuypers, R. (2008). Functional bone reconstruction and manipulation in computer-aided surgery using superquadrics, Proceedings of the 10th International Symposium Biomaterials: Fundamentals and Clinical Applications, Essen, Germany.
[5] Cuypers, R., Tang, Z., Luther, W. and Pauli, J. (2008). A parametrized model for efficient and accurate femur reconstruction using model-based segmentation and superquadric shapes, Proceedings of the 4th International Conference on Telehealth and Assistive Technologies, Baltimore, MD, USA, (accepted)
[6] Davis, R. I., Õunpuu, S., Tyburski, D. and Gage, J. (1991). A gait analysis data collection and reduction technique, Human Motion Science 10(5): 575-587.
[7] Della Croce, U., Leardini, A., Chiari, L. and Cappozzo, A. (2005). Human movement analysis using stereophotogrammetry. Part 4: Assessment of anatomical landmark misplacement and its effects on joint kinematics, Gait Posture 21(2):212-225.
[8] Delp, S. and Loan, J. (2000). A computational framework for simulating and analyzing human and animal movement, IEEE Computing in Science and Engineering 2(5):46-55.
[9] Ehrig, R. M., Taylor, W. R., Duda, G. N. and Heller, M. O. (2006). A survey of formal methods for determining the centre of rotation of ball joints, Journal of Biomechanics 39(15): 2798-2809.
[10] Hill, A. V. (1938). The heat of shortening and the dynamic constants of muscle, Proceedings of the Royal Society London 126:136-195.
[11] Kecskeméthy, A. and Hiller, M. (1994a). An object-oriented approach for an effective formulation ofmultibody dynamics, Computer Methods in Applied Mechanics and Engineering 115(3-4): 287-314.
[12] Kecskeméthy, A. and Hiller, M. (1994b). Object-oriented programming techniques in vehicle dynamics simulation, Proceeding of the IMACS Symposium on Mathematical Modelling, Vienna, Austria, Vol. 4, pp. 673-678.
[13] Kecskeméthy, A., Lange, C. and Grabner, G. (2000). A geometric model for cylinder-cylinder impact with application to vertebrae motion simulation, in J. Lenarčič and M. M. Stanišić (Eds.), 7th International Symposium on Advances in Robot Kinematics, Piran-Portoroz, Slovenia, Kluwer Academic Publishers, Dordrecht/Boston/London, pp. 345-354.
[14] Kecskeméthy, A., Stolz, M., Strobach, D., Saraph, V., Steinwender, G. and Zwick, B. (2003). Improvements in measurebased simulation of the human lower extremity, Proceedings of the IASTED Conference on Biomechanics, Rhodes, Greece, pp. 155-160.
[15] Kecskeméthy, A. and Weinberg, A. (2003). An improved elastokinematic model of the human forearm for biofidelic medical diagnosis, CD Proceedings of the International ECCOMAS Thematic Conference on Advances in Computational Multibody Dynamics, Lisbon, Portugal.
[16] Liu, X., Kecskeméthy, A. and Tändl, M. (2008). A selfstabilized foot-ground contact model using two segments and cylinder-plane pairs, i-FAB Congress, Bologna, Italy.
[17] Maestri, G. (1995). Capturing motion, Computer Graphics World 18(12): 47-51.
[18] Oxford Metrics, L. (2004). Vicon Clinical Manager's User Manual, Oxford Metrics Ltd.
[19] Parenti-Castelli, V., Leardini, A., Di Gregorio, R. and O'Connor, J. (2004). On the modeling of passive motion of the human knee joint by means of equivalent planar and spatial parallel mechanisms, Autonomous Robots 16(2): 219-232.
[20] Peters, A., Sangeux, M., Morris, M. and Baker, R. (2009). Determination of the optimal locations of surface-mounted markers on the tibial segment, Gait Posture 29(1): 42-48.
[21] Piazza, S. J. and Cavanagh, P. R. (2000). Measurement of the screw-home motion of the knee is sensitive to errors in axis alignment, Journal of Biomechanics 33(8): 1029-1034.
[22] Stroustrup, B. (1991). The C++ Programming Language, Second Edition, Addison-Wesley Series in Computer Science, Addison-Wesley Publishing Company, Reading, MA.
[23] Tändl, M., Stark, T., Erol, N., Löer, F. and Kecskeméthy, A. (2008). An integrated simulation environment for human gait analysis and evaluation, Proceedings of the 10th International Symposium on Biomaterials: Fundamentals and Clinical Applications, Essen, Germany.
[24] Tang, Z., Pauli, P. D. J. and Kecskeméthy, P. D. A. (2008). Automatic identification of functional kinematic bone features from mrt segmentation for gait analysis, Proceedings of the 10th International Symposium on Biomaterials: Fundamentals and Clinical Applications, Essen, Germany, (submitted).
[25] Vicon Motion Systems Limited (2007). Plug-in-Gait Marker Placement-Documentation, Available at: http://www3.uta.edu/faculty/ricard/Grad%20Biomech/Vicon%20Manuals/.
[26] Winter, D. (1990). Biomechanics and Motor Control of Human Movement, 2nd Edn., John Wiley Sons Inc., New York, NY.
[27] Wirfs-Brock, R. and Wilkerson, B. (1989). Object-oriented design: A responsibility-driven approach, Proceedings of the Conference on Object-Oriented Programming Systems, Languages and Applications. New Orleans, LA,USA, pp. 71-75.
[28] Zordan, V. B. and Van Der Horst, N. C. (2003). Mapping optical motion capture data to skeletal motion using a physical model, Proceedings of the Eurographics/SIGGRAPH Symposium on Computer Animation, San Diego, CA, USA, pp. 245-250.