Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2009_19_3_a4, author = {Rauh, A. and Minisini, J. and Hofer, E. P.}, title = {Verification techniques for sensitivity analysis and design of controllers for nonlinear dynamic systems with uncertainties}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {425--439}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_3_a4/} }
TY - JOUR AU - Rauh, A. AU - Minisini, J. AU - Hofer, E. P. TI - Verification techniques for sensitivity analysis and design of controllers for nonlinear dynamic systems with uncertainties JO - International Journal of Applied Mathematics and Computer Science PY - 2009 SP - 425 EP - 439 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_3_a4/ LA - en ID - IJAMCS_2009_19_3_a4 ER -
%0 Journal Article %A Rauh, A. %A Minisini, J. %A Hofer, E. P. %T Verification techniques for sensitivity analysis and design of controllers for nonlinear dynamic systems with uncertainties %J International Journal of Applied Mathematics and Computer Science %D 2009 %P 425-439 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_3_a4/ %G en %F IJAMCS_2009_19_3_a4
Rauh, A.; Minisini, J.; Hofer, E. P. Verification techniques for sensitivity analysis and design of controllers for nonlinear dynamic systems with uncertainties. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 3, pp. 425-439. http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_3_a4/
[1] Ackermann, J., Blue, P., Bünte, T., Güvenc, L., Kaesbauer, D., Kordt, M., Muhler, M. and Odenthal, D. (2002). Robust Control: The Parameter Space Approach, 2nd Edn., Springer-Verlag, London.
[2] Aschemann, H., Rauh, A., Kletting, M. and Hofer, E. P. (2006). Flatness-based control of a simplified wastewater treatment plant, Proceedings of the IEEE International Conference on Control Applications CCA 2006, Munich, Germany, pp. 2243-2248.
[3] Auer, E., Rauh, A., Hofer, E. P. and Luther,W. (2008). Validated modeling of mechanical systems with SMARTMOBILE: Improvement of performance by VALENCIA-IVP, Proceedings of the Dagstuhl Seminar 06021: Reliable Implementation of Real Number Algorithms. Theory and Practice, Dagstuhl, Germany, Lecture Notes in Computer Science, Vol. 5045, Springer-Verlag, Berlin/Heidelberg, pp. 1-27.
[4] Bendsten, C. and Stauning, O. (2007). FADBAD++, Version 2.1, available at: http://www.fadbad.com.
[5] Bünte, T. (2000). Mapping of Nyquist/Popov theta-stability margins into parameter space, Proceedings of the 3rd IFAC Symposium on Robust Control Design, Prague, Czech Republic.
[6] Delanoue, N. (2006). Algoritmes numériques pour l'analyse topologique-Analyse par intervalles et théorie des graphes, Ph.D. thesis, École Doctorale d'Angers, Angers, (in French).
[7] Fliess, M., Lévine, J., Martin, P. and Rouchon, P. (1995). Flatness and defect of nonlinear systems: Introductory theory and examples, International Journal of Control 61(6): 1327-1361.
[8] Hammersley, J. M. and Handscomb, D. C. (1964). Monte-Carlo Methods, John Wiley Sons, New York, NY.
[9] Henze, M., Harremoës, P., Arvin, E. and la Cour Jansen, J. (2002). Wastewater Treatment, 3rd Edn., Springer-Verlag, Berlin.
[10] Hermann, R. and Krener, A. J. (1977). Nonlinear controllability and observability, IEEE Transactions on Automatic Control 22(5): 728-740.
[11] Isidori, A. (1989). Nonlinear Control Systems, 2nd Edn., Springer-Verlag, Berlin.
[12] Keil, C. (2007). PROFIL/BIAS, Version 2.0.4, Available at: www.ti3.tu-harburg.de/keil/profil/.
[13] Khalil, H. K. (2002). Nonlinear Systems, 3rd Edn., Prentice-Hall, Upper Saddle River, NJ.
[14] Marquez, H. J. (2003). Nonlinear Control Systems, John Wiley Sons, Inc., Hoboken, NJ.
[15] Odenthal, D. and Blue, P. (2000). Mapping of frequency response magnitude specifications into parameter space, Proceedings of the 3rd IFAC Symposium on Robust Control Design, Prague, Czech Republic.
[16] Office for Official Publications of the European Communities (2003). Council Directive of 21 May 1991 Concerning Urban Waste Water Treatment (91/271/EEC), Available at: http://ec.europa.eu/environment/water/water-urbanwaste/directiv.html.
[17] Pepy, R., Kieffer, M. and Walter, E. (2008). Reliable robust path planner, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Nice, France, pp. 1655-1660.
[18] Rauh, A., Auer, E. and Hofer, E. P. (2007a). VALENCIA-IVP:A comparison with other initial value problem solvers, Proceedings of the 12th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics SCAN 2006, Duisburg, Germany, IEEE Computer Society, Los Alamitos, CA, (on CDROM).
[19] Rauh, A., Auer, E., Minisini, J. and Hofer, E. P. (2007b). Extensions of VALENCIA-IVP for reduction of overestimation, for simulation of differential algebraic systems, and for dynamical optimization, PAMM 7(1): 1023001-1023002.
[20] Rauh, A., Kletting, M., Aschemann, H. and Hofer, E. P. (2007c). Reduction of overestimation in interval arithmetic simulation of biological wastewater treatment processes, Journal of Computational and Applied Mathematics 199(2): 207-212.
[21] Rauh, A., Minisini, J. and Hofer, E. P. (2007d). Interval techniques for design of optimal and robust control strategies, Proceedings of the 12th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics SCAN 2006, Duisburg, Germany, IEEE Computer Society, Los Alamitos, CA, (on CDROM).
[22] Rauh, A. and Hofer, E. P. (2005). Interval arithmetic optimization techniques for uncertain discrete-time systems, Proceedings of the 13th International Workshop on Dynamics and Control, Modeling and Control of Autonomous Decision Support Based Systems, Wiesensteig, Germany, Shaker Verlag, Aachen, pp. 141-148.
[23] Rauh, A. and Hofer, E. P. (2009). Interval methods for optimal control, Proceedings of the 47th Workshop on Variational Analysis and Aerospace Engineering 2007, Erice, Italy, Springer-Verlag, New York, NY, pp. 397-418.
[24] Rauh, A., Minisini, J. and Hofer, E. P. (2009). Towards the development of an interval arithmetic environment for validated computer-aided design and verification of systems in control engineering, Proceedings of the Dagstuhl Seminar 08021: Numerical Validation in Current Hardware Architectures, Dagstuhl, Germany, Lecture Notes in Computer Science, Vol. 5492, Springer-Verlag, Berlin/Heidelberg, pp. 175-188.
[25] Röbenack, K. (2002). On the efficient computation of higher order maps adkfg(x) using Taylor arithmetic and the Campbell-Baker-Hausdorff formula, in A. Zinober and D. Owens (Eds.), Nonlinear and Adaptive Control, Lecture Notes in Control and Information Science, Vol. 281, Springer, Berlin/Heidelberg, pp. 327-336.
[26] Rohn, J. (1994). Positive definiteness and stability of interval matrices, SIAM Journal on Matrix Analysis and Applications 15(1): 175-184.
[27] Rump, S. M. (2007). INTLAB, Version 5.4, available at: http://www.ti3.tu-harburg.de/~rump/intlab/.
[28] Sienel,W., Bünte, T. and Ackermann, J. (1996). PARADISE-Parametric robust analysis and design interactive software environment: A MATLAB-based robust control toolbox, Proceedings of the 1996 IEEE International Symposium on Computer-Aided Control System Design, Dearborn, MI, USA, pp. 380-385.
[29] Sontag, E. D. (1998). Mathematical Control Theory-Deterministic Finite Dimensional Systems, Springer-Verlag, New York, NY.