Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2009_19_2_a13, author = {Brdy\'s, M. A. and Borowa, A. and Id\'zkowiak, P. and Brdy\'s, M. T.}, title = {Adaptive prediction of stock exchange indices by state space wavelet networks}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {337--348}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_2_a13/} }
TY - JOUR AU - Brdyś, M. A. AU - Borowa, A. AU - Idźkowiak, P. AU - Brdyś, M. T. TI - Adaptive prediction of stock exchange indices by state space wavelet networks JO - International Journal of Applied Mathematics and Computer Science PY - 2009 SP - 337 EP - 348 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_2_a13/ LA - en ID - IJAMCS_2009_19_2_a13 ER -
%0 Journal Article %A Brdyś, M. A. %A Borowa, A. %A Idźkowiak, P. %A Brdyś, M. T. %T Adaptive prediction of stock exchange indices by state space wavelet networks %J International Journal of Applied Mathematics and Computer Science %D 2009 %P 337-348 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_2_a13/ %G en %F IJAMCS_2009_19_2_a13
Brdyś, M. A.; Borowa, A.; Idźkowiak, P.; Brdyś, M. T. Adaptive prediction of stock exchange indices by state space wavelet networks. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 2, pp. 337-348. http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_2_a13/
[1] Borowa, A., Brdyś, M.A. and Mazur, K. (2007). Modeling of wastewater treatment plant for monitoring and control purposes by state-space wavelet networks, International Journal of Computers, Communications Control II(2): 121-131.
[2] Brdyś, M.A., Grochowski, M., Gminski, T., Konarczak, K. And Drewa, M. (2008). Hierarchical predictive control of integrated wastewater treatment systems, Control Engineering Practice 16(6): 751-767.
[3] Grossmann, A. and Morlet, J. (1984). Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM Journal on Mathematical Analysis 15(4): 723-736.
[4] Hajek, B. (1988). Cooling schedules for optimal annealing, Mathematics of Operations Research 13(2): 311-329.
[5] Jacobson, S.H., Hall, S.N., Mclay, L.A. and Orosz, J.E. (2005). Performance analysis of cyclical simulated annealing algorithms, Methodology and Computing in Applied Probability 7(2): 183-201.
[6] Karafyllidis, I. (1999). A simulator for single-electron tunnel devices and circuits based on simulated annealing, Superlattices and Microstructures 25(4): 567-572.
[7] Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983). Optimization by simulated annealing, Science 220: 671-680.
[8] Khalil, H.K. (2002). Nonlinear Systems, Prentice Hall.
[9] Kulawski, G.J. and Brdys´s, M.A. (2000). Stable adaptive control with recurrent networks, Automatica 36(1): 5-22.
[10] Kuo, R.J., Chen, C.H. and Hwang, Y.C. (2001). An intelligent stock trading support system through integration of genetic algorithm based fuzzy neural network and artificial neural network, Fuzzy Sets and Systems 118(1): 21-45.
[11] Locatelli, M. (2000). Convergence of a simulated annealing algorithm for continuous global optimization, Journal of Global Optimization 18(3): 219-234.
[12] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E. (1953). Equations of state calculations by fast computing machines, Journal of Chemical Physics 21: 1087-1092.
[13] Mun, J. (2006). Modeling Risk, Applying Monte Carlo Simulation, Real Options Analysis, Forecasting and Optimisation Techniques, John Wiley Sons, Inc.
[14] Nguyen, D.T. and Brdyś, M.A. (2006). Dynamic neural network identification and control under unmeasurable plant states, Proceedings of the International Control Conference UKAC 2006, Glasgow, UK.
[15] Qi, R. and Brdyś, M.A. (2005). Adaptive fuzzy modelling and control for discrete-time nonlinear uncertain systems, Proceedings of the American Control Conference, ACC 2005, Portland, OR, USA.
[16] Qi, R. and Brdyś, M.A. (2008). Stable indirect adaptive control based on discrete-time T-S fuzzy model, Fuzzy Sets and Systems 159(8): 900-925.
[17] Sanchez, E.N. and Perez, J.P. (1999). Input-to-state stability analysis for dynamic neural networks, IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications 46(11): 1395-1398.
[18] Tsang, P.M., Kwok, P., Choy, S.O., Kwan, R., Ng, S.C., Mak, J., Tsang, J., Koong, K. and Wong. T. (2007). Design and implementation of NN5 for Hong Kong stock price forecasting, Engineering Application of Artificial Inteligence 20(4): 453-461.
[19] Zamarreno, J.M. and Pastora, V. (1998). State space neural network. Properties and applications, Neural Networks 11(6): 1099-1112.
[20] Zhang, G., Patuwo, B.E. and Hu, M.Y. (1998). Forecasting with artificial neural networks: The state of the art, International Journal of Forecasting 14(1): 35-62.
[21] Zhang, Q. and Beneveniste, A. (1992). Wavelet networks, IEEE Transactions on Neural Networks 3(6): 889-898.
[22] Zhang, Q. (1992). Wavelet network: The radial structure and an efficient initialization procedure, Technical Report LiTHISY-I-1423, Linköping University.