Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2009_19_2_a10, author = {Siwek, K. and Osowski, S. and Szupiluk, R.}, title = {Ensemble neural network approach for accurate load forecasting in a power system}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {303--315}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_2_a10/} }
TY - JOUR AU - Siwek, K. AU - Osowski, S. AU - Szupiluk, R. TI - Ensemble neural network approach for accurate load forecasting in a power system JO - International Journal of Applied Mathematics and Computer Science PY - 2009 SP - 303 EP - 315 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_2_a10/ LA - en ID - IJAMCS_2009_19_2_a10 ER -
%0 Journal Article %A Siwek, K. %A Osowski, S. %A Szupiluk, R. %T Ensemble neural network approach for accurate load forecasting in a power system %J International Journal of Applied Mathematics and Computer Science %D 2009 %P 303-315 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_2_a10/ %G en %F IJAMCS_2009_19_2_a10
Siwek, K.; Osowski, S.; Szupiluk, R. Ensemble neural network approach for accurate load forecasting in a power system. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 2, pp. 303-315. http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_2_a10/
[1] Afkhami-Rohani, K. R. and Maratukulam, D. (1998). ANNSTLF-Artificial neural network short-term load forecaster-Generation three, IEEE Transactions on Power Systems 13(4): 1413-1422.
[2] Belouchrani, A., Abed-Meraim, K., Cardoso, J. and Moulines, E. (1997). A BSS technique using SOS, IEEE Transactions on Signal Processing 45(2): 434-444.
[3] Choi, S., Cichocki, A. and Belouchrani, A. (2002). Second order nonstationary source separation, Journal of VLSI Signal Processing 32(1-2): 93-104.
[4] Cichocki, A. and Amari, S. I. (2003). Adaptive Blind Signal and Image Processing, Wiley, New York, NY.
[5] Cichocki, A., Amari, S., Siwek, K. and Tanaka, T. (2009). ICALAB Toolboxes, RIKEN, Tokyo, Available at: http://www.bsp.brain.riken.jp/ICALAB.
[6] Cottrell, M., Girard, B., Girard, Y., Muller, C. and Rousset, P. (1995). Daily electrical power curve: Classification and forecasting using a Kohonen map, Proceedings of the International Workshop on Artificial Neutral Networks, IWANN, Malaga, Spain, pp. 1107-1113.
[7] Diamantras, K. and Kung, S. Y. (1996). Principal Component Neural Networks, Wiley, New York, NY.
[8] Drezga, I. and Rahman, S. (1998). Input variable selection for ANN-based short-term load forecasting, IEEE Transactions on Power Systems 13(4): 1238-1244.
[9] Fidalgo, J. N. and Pecas Lopez, J. (2005). Load forecasting performance enhancement when facing anomalous events, IEEE Transations on Power Systems 20(2): 408-415.
[10] Golub, G. and Van Loan, C. (1991). Matrix Computations, Academic Press, New York, NY.
[11] Gonzalez-Romera, E., Jaramillo-Moran, M. A. and Carmona-Fernandez, D. (2006). Monthly electric energy demand forecasting based on trend extraction, IEEE Transations on Power Systems 21(4): 1946-1953.
[12] Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection, Journal of Machine Learning Research 3(3): 1158-1182.
[13] Haykin, S. (2002). Neural Networks. A Comprehensive Foundation, Macmillan, New York, NY.
[14] Hippert, H. S., Pedreira, C. E. and Souza, R. C. (2001). Neural networks for short-term load forecasting: A review and evaluation, IEEE Transations on Power Systems 16(1): 44-55.
[15] Kandil, N., Wamkeue, R., Saad, M. and Georges, S. (2006). An efficient approach for short term load forecasting using artificial neural networks, Electrical Power and Energy Systems 28(4): 525-530.
[16] Kiartzis, S. J., Zoumas, C. E., Theocharis, J., Bakirtzis, A. G. and Petridis, V. (1997). Short-term load forecasting in an autonomous power system using artificial neural networks, IEEE Transations on Power Systems 12(4): 1591-1596.
[17] Kuntcheva, L. (2004). Combining Pattern Classifiers-Methods and Algorithms, Wiley, New York, NY.
[18] Lendasse, A., Cottrell, M., Wertz, V. and Verleysen, M. (2002). Prediction of electric load using kohonen maps-Application to the Polish electricity consumption, Proceedings of the American Control Conference, Anchorage, AK, USA, Vol. 28, pp. 3684-3688.
[19] Ljung, L. (1999). System Identification-Theory for the User, PTR Prentice Hall, Upper Saddle River, NJ.
[20] Mandal, P., Senjyu, T., Urasaki, N. and Funabashi, T. (2006). A neural network based several hours ahead electric load forecasting using similar days approach, Electrical Power and Energy Systems 28(3): 367-373.
[21] Nikias, L. and Petropulu, A. P. (1993). Higher-Order Spectral Analysis-A Nonlinear Signal Processing Framework, Prentice Hall, Upper Saddle River, NJ.
[22] Osowski, S. (2006). Neural Networks for Information Processing, Warsaw University of Technology Press, Warsaw, (in Polish).
[23] Osowski, S. and Siwek, K. (1999). The self-organizing neural network approach to load forecasting in power system, Proceedings of the International Joint Conference on Neural Networks, Washington, DC, USA, Vol. 28, pp. 1345-1348.
[24] Osowski, S. and Siwek, K. (2002). Regularization of neural networks for load forecasting in power system, IEE Proceedings GTD 149(3): 340-345.
[25] Sorjamaa, A., Hao, J., Reyhani, N., Li, Y. and Lendasse, A. (2007). Methodology for long-term prediction of time series, Neurocomputing 70(16-18): 2861-2869.
[26] Yalcinoz, T. and Eminoglu, U. (2005). Short term and medium term power distribution load forecasting by neural networks, Energy Conversion and Management 46(8): 1393-1405.