Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2009_19_1_a9, author = {G\'orecki, H.}, title = {Algebraic condition for decomposition of large-scale linear dynamic systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {107--111}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_1_a9/} }
TY - JOUR AU - Górecki, H. TI - Algebraic condition for decomposition of large-scale linear dynamic systems JO - International Journal of Applied Mathematics and Computer Science PY - 2009 SP - 107 EP - 111 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_1_a9/ LA - en ID - IJAMCS_2009_19_1_a9 ER -
%0 Journal Article %A Górecki, H. %T Algebraic condition for decomposition of large-scale linear dynamic systems %J International Journal of Applied Mathematics and Computer Science %D 2009 %P 107-111 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_1_a9/ %G en %F IJAMCS_2009_19_1_a9
Górecki, H. Algebraic condition for decomposition of large-scale linear dynamic systems. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 1, pp. 107-111. http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_1_a9/
[1] Alagar, V. S. and Thanh, M. (1985). Fast polynomical decomposition algorithms, Lecture Notes in Computer Science 204: 150-153.
[2] Bartoni, D. R. and Zippel, R. (1985). Polynomial decomposition algorthims, Journal of Symbolic Computations 1(2): 159-168.
[3] Borodin, A., Fagin, R., Hopbroft, J. E. and Tompa, M. (1985). Decrasing the nesting depth of expressions involving square roots, Journal of Symbolic Computations 1(2): 169-188.
[4] Coulter, R. S., Havas, G. and Henderson, M.(1998). Functional decomposition of a class of wild polynomials, Journal of Combinational Mathematics Combinational Computations 28: 87-94.
[5] Coulter, R. S., Havas, G. and Henderson, M. (2001). Giesbrecht's algorithm, the HFE cryptosystem and Ore's p8-polynomials, in K. Shirayangi and K. Yokoyama (Eds.), Lecture Notes Series of Computing, Vol. 9, World Scientific, Singapore, pp. 36-45.
[6] Gathen, J. (1990). Functional decomposition of polynomials: The tame case, Journal of Symbolic Computations 9: 281-299.
[7] Giesbrecht, M. and May, J. (2005). New algorithms for exact and approximate polynomial decomposition, Proceedings of the International Workshop on Symbolic-Numeric Computation, Xi'an, China, pp. 297-307.
[8] Górecki, H. and Popek, L. (1987). Algebraic condition for decomposition of large-scale linear dynamic systems, Automatyka 42: 13-28.
[9] Kozen, D. and Landau, S. (1989). Polynomial decomposition algorithms, Journal of Symbolic Computations 22: 445-456.
[10] Kozen, D., Landau, S. and Zippel, R.(1996). Decomposition of algebraic functions, Journal of Symbolic Computations 22: 235-246.
[11] Mostowski, A. and Stark, M. (1954). Advanced Algebra, Polish Scientific Publishers, Warsaw, (in Polish).
[12] Perron, O. (1927). Algebra, Walter de Gruyter and Co, Berlin, (in German).
[13] Suszkiewicz, A. (1941). Fundamentals of Advanced Algebra, OGIZ, Moscow, (in Russian).
[14] Watt, S. M. (2008). Functional decomposition of symbolic polynomials, Proceedings of the International Conference on Computational Science Its Applications, Cracow, Poland, Vol. 5101, Springer, pp. 353-362.