Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2009_19_1_a6, author = {Vardulakis, A. I. G. and Karampetakis, N. P. and Antoniou, E. N. and Tictopoulou, E.}, title = {On the realization theory of polynomial matrices and the algebraic structure of pure generalized state space systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {77--88}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_1_a6/} }
TY - JOUR AU - Vardulakis, A. I. G. AU - Karampetakis, N. P. AU - Antoniou, E. N. AU - Tictopoulou, E. TI - On the realization theory of polynomial matrices and the algebraic structure of pure generalized state space systems JO - International Journal of Applied Mathematics and Computer Science PY - 2009 SP - 77 EP - 88 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_1_a6/ LA - en ID - IJAMCS_2009_19_1_a6 ER -
%0 Journal Article %A Vardulakis, A. I. G. %A Karampetakis, N. P. %A Antoniou, E. N. %A Tictopoulou, E. %T On the realization theory of polynomial matrices and the algebraic structure of pure generalized state space systems %J International Journal of Applied Mathematics and Computer Science %D 2009 %P 77-88 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_1_a6/ %G en %F IJAMCS_2009_19_1_a6
Vardulakis, A. I. G.; Karampetakis, N. P.; Antoniou, E. N.; Tictopoulou, E. On the realization theory of polynomial matrices and the algebraic structure of pure generalized state space systems. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 1, pp. 77-88. http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_1_a6/
[1] Bosgra, O. and Van DerWeiden, A. (1981). Realizations in generalized state-space form for polynomial system matrices and the definitions of poles, zeros and decoupling zeros at infinity, International Journal of Control 33(3): 393-411.
[2] Christodoulou, M. and Mertzios, B. (1986). Canonical forms for singular systems, Proceedings of the of 25th IEEE Conference on Decision and Control (CDC), Athens, Greece, pp. 2142-2143.
[3] Cobb, D. (1984). Controllability, observability, and duality in singular systems, IEEE Transactions on Automatic Control 29(12): 1076-1082.
[4] Conte, G. and Perdon, A. (1982). Generalized state space realizations of non-proper rational transfer functions, Systems and Control Letters 1(4): 270-276.
[5] Gantmacher, F. (1959). The Theory of Matrices, Chelsea Publishing Company, New York, NY.
[6] Karampetakis, N. (1993). Notions of Equivalence for Linear Time Invariant Multivariable Systems, Ph.D. thesis, Department of Mathematics, Aristotle University of Thessaloniki.
[7] Lewis, F. (1986). A survey of linear singular systems, Circuits, Systems, and Signal Processing 5(1): 3-36.
[8] Lewis, F., Beauchamp, G. and Syrmos, V. (1989). Some useful aspects of the infinite structure in singular systems, Proceedings of the International Symposium MTNS-89, Amsterdam, The Netherlands, pp. 263-270.
[9] Misra, P. and Patel, R. (1989). Computation of minimal-order realizations of generalized state-space systems, Circuits, Systems, and Signal Processing 8(1): 49-70.
[10] Rosenbrock, H. (1970). State Space and Multivariable Theory, Nelson, London.
[11] Rosenbrock, H. (1974). Structural properties of linear dynamical systems, International Journal of Control 20(2): 191-202.
[12] Vafiadis, D. and Karcanias, N. (1995). Generalized state-space realizations from matrix fraction descriptions, IEEE Transactions on Automatic Control 40(6): 1134-1137.
[13] Vardulakis, A. (1991). Linear Multivariable Control: Algebraic Analysis and Synthesis Methods, Wiley, New York, NY.
[14] Vardulakis, A. and Karcanias, N. (1983). Relations between strict equivalence invariants and structure at infinity of matrix pencils, IEEE Transactions on Automatic Control 28(4): 514-516.
[15] Vardulakis, A., Limebeer, D. and Karcanias, N. (1982). Structure and Smith-MacMillan form of a rational matrix at infinity, International Journal of Control 35(4): 701-725.
[16] Varga, A. (1989). Computation of irreducible generalized statespace realizations, Kybernetika 26(2): 89-106.
[17] Verghese, G. (1978). Infinite Frequency Behavior in Dynamical Systems, Ph.D. thesis, Department of Electrical Engineering, Stanford University.
[18] Verghese, G., Levy, B. and Kailath, T. (1981). A generalized state-space for singular systems, IEEE Transactions on Automatic Control 26(4): 811-831.