Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2008_18_4_a0, author = {Tharrault, Y. and Mourot, G. and Ragot, J. and Maquin, D.}, title = {Fault detection and isolation with robust principal component analysis}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {429--442}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_4_a0/} }
TY - JOUR AU - Tharrault, Y. AU - Mourot, G. AU - Ragot, J. AU - Maquin, D. TI - Fault detection and isolation with robust principal component analysis JO - International Journal of Applied Mathematics and Computer Science PY - 2008 SP - 429 EP - 442 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_4_a0/ LA - en ID - IJAMCS_2008_18_4_a0 ER -
%0 Journal Article %A Tharrault, Y. %A Mourot, G. %A Ragot, J. %A Maquin, D. %T Fault detection and isolation with robust principal component analysis %J International Journal of Applied Mathematics and Computer Science %D 2008 %P 429-442 %V 18 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_4_a0/ %G en %F IJAMCS_2008_18_4_a0
Tharrault, Y.; Mourot, G.; Ragot, J.; Maquin, D. Fault detection and isolation with robust principal component analysis. International Journal of Applied Mathematics and Computer Science, Tome 18 (2008) no. 4, pp. 429-442. http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_4_a0/
[1] Chiang L. H. and Colegrove L. F. (2007). Industrial implementation of on-line multivariate quality control, Chemometricand Intelligent Laboratory Systems 88(2): 143-153.
[2] Croux C., Filzmoser P. and Oliveira M. (2007). Algorithms for projection-pursuit robust principal component analysis, Chemometrics and Intelligent Laboratory Systems 87(2): 218-225.
[3] Croux C. and Ruiz-Gazen A. (2005). High breakdown estimators for principal components: The projectionpursuit approach revisited, Journal of Multivariate Analysis 95(1): 206-226.
[4] Dunia R. and Qin S. (1998). A subspace approach to multidimensional fault identification and reconstruction, American Institute of Chemical Engineers Journal 44 (8): 1813-1831.
[5] HarkatM.-F.,Mourot G. and Ragot J. (2006). An improved PCA scheme for sensor FDI: Application to an air quality monitoring network, Journal of Process Control 16(6): 625-634.
[6] Hubert M., Rousseeuw P. and Van den Branden, K. (2005). RobPCA: A new approach to robust principal component analysis, Technometrics 47 (1): 64-79.
[7] Hubert M., Rousseeuw P. and Verboven S. (2002). A fast method for robust principal components with applications to chemometrics, Chemometrics and Intelligent Laboratory Systems 60(1-2): 101-111.
[8] Jackson J. and Mudholkar G. S. (1979). Control procedures for residuals associated with principal component analysis, Technometrics 21(3): 341-349.
[9] Kano M. and Nakagawa Y. (2008). Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry, Computers Chemical Engineering 32(1-2): 12-24.
[10] Li G. and Chen Z. (1985). Projection-pursuit approach to robust dispersion matrices and principal components: Primary theory and Monte Carlo, Journal of the American Statistical Association 80(391): 759-766.
[11] Li W. and Qin S. J. (2001). Consistent dynamic PCA based on errors-in-variables subspace identification, Journal of Process Control 11(6): 661-678.
[12] Maronna R. A., Martin R. and Yohai V. J. (2006). Robust Statistics: Theory and Methods, Wiley, New York, NY . Q
[13] Qin S. J. (2003). Statistical process monitoring: Basics and beyond, Journal of Chemometrics 17(8-9): 480-502.
[14] Rousseeuw P. (1987). Robust Regression and Outliers Detection, Wiley, New York, NY.
[15] Rousseeuw P. and Van Driessen K. (1999). Fast algorithm for the minimum covariance determinant estimator, Technometrics 41(3): 212-223.
[16] Ruiz-Gazen, A. (1996). A very simple robust estimator of a dispersion matrix, Computational Statistics and Data Analysis 21(2): 149-162.
[17] Yue, H. and Qin, S. (2001). Reconstruction-based fault identification using a combined index, Industrial and Engineering Chemistry Research 40(20): 4403-4414.