Controllability and observability of linear discrete-time fractional-order systems
International Journal of Applied Mathematics and Computer Science, Tome 18 (2008) no. 2, pp. 213-222.

Voir la notice de l'article provenant de la source Library of Science

In this paper we extend some basic results on the controllability and observability of linear discrete-time fractional-order systems. For both of these fundamental structural properties we establish some new concepts inherent to fractional-order systems and we develop new analytical methods for checking these properties. Numerical examples are presented to illustrate the theoretical results.
Keywords: system modeling, discrete fractional state-space systems, reachability, controllability and observability gramians
Mots-clés : modelowanie systemu, osiągalność, gramian sterowalności, gramian obserwowalności
@article{IJAMCS_2008_18_2_a8,
     author = {Guermah, S. and Djennoune, S. and Bettayeb, M.},
     title = {Controllability and observability of linear discrete-time fractional-order systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {213--222},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_2_a8/}
}
TY  - JOUR
AU  - Guermah, S.
AU  - Djennoune, S.
AU  - Bettayeb, M.
TI  - Controllability and observability of linear discrete-time fractional-order systems
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2008
SP  - 213
EP  - 222
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_2_a8/
LA  - en
ID  - IJAMCS_2008_18_2_a8
ER  - 
%0 Journal Article
%A Guermah, S.
%A Djennoune, S.
%A Bettayeb, M.
%T Controllability and observability of linear discrete-time fractional-order systems
%J International Journal of Applied Mathematics and Computer Science
%D 2008
%P 213-222
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_2_a8/
%G en
%F IJAMCS_2008_18_2_a8
Guermah, S.; Djennoune, S.; Bettayeb, M. Controllability and observability of linear discrete-time fractional-order systems. International Journal of Applied Mathematics and Computer Science, Tome 18 (2008) no. 2, pp. 213-222. http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_2_a8/

[1] Antsaklis P.J. and Michel A.N. (1997). Linear Systems, McGraw-Hill, New York.

[2] Åström K. J. and Wittenmark B. (1996). Computer- Controlled Systems, Theory and Design, 3rd Ed., Prentice Hall Inc., New Jersey.

[3] Axtell M. and Bise E. M. (1990). Fractional calculus applications in control systems, Proceedings of the IEEE 1990 National Aerospace and Electronics Conference, New York, USA, pp. 536-566.

[4] Battaglia J. L., Cois O., Puigsegur L. and Oustaloup A. (2001). Solving an inverse heat conduction problem using a noninteger identified model, International Journal of Heat and Mass Transfer, 44(14): 2671-2680.

[5] BettayebM. and Djennoune S. (2006). A note on the controllability and the observability of fractional dynamical systems, Proceedings of the 2nd IFAC Workshop on Fractional Differentiation and its Workshop Applications, Porto, Portugal, pp. 506-511.

[6] Boukas E.K. (2006). Discrete-time systems with time-varying time delay: Stability and stabilizability, Mathematical Problems in Engineering, bf 2006 (ID42489): 1-10.

[7] Cois O., Oustaloup A., Battaglia E. and Battaglia J.L. (2002). Non integer model from modal decomposition for time domain identification, 41st IEEE CDC'2002 Tutorial Workshop 2, Las Vegas, USA.

[8] Debeljković D. Lj., Aleksendrić M., Yi-Yong N. and Zhang Q. L. (2002). Lyapunov and non-Lyapunov stability of linearndiscrete time delay systems, Facta Universitatis, Series: Mechanical Engineering 1(9): 1147-1160.

[9] Dorčák L., Petras I. and Kostial I. (2000). Modeling and analysis of fractional-order regulated systems in the state-space, Procedings of International Carpathian Control Conference, High Tatras, Slovak Republic, pp. 185-188.

[10] Dzieliński A. and Sierociuk D. (2005). Adaptive feedback control of fractional order discrete state-space systems, Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'05), Vienna Austria, pp. 804-809.

[11] Dzieliński A. and Sierociuk D. (2006). Observer for discrete fractional order systems, Proceedings of the 2nd IFAC Workshop on Fractional Differentiation Applications, Porto, Portugal, pp. 524-529.

[12] Dzieliński A. and Sierociuk D. (2007). Reachability, controllability and observability of the fractional order discrete statespace system, Proceedings of the IEEE/IFAC International Conference on Methods and Models in Automation and Robotics, MMAR'2007, Szczecin, Poland, pp. 129-134.

[13] Gorenflo R. and Mainardi F. (1997). Fractional calculus: Integral and differential equations of fractional order, in (A. Carpintieri and F. Mainardi, Eds.) Fractals and Fractional Calculus in Continuum Mechanics, Vienna, New York, Springer Verlag.

[14] Hanyga A. (2003). Internal variable models of viscoelasticity with fractional relaxation laws, Proceddings of Design Engineering Technical Conference, Mechanical Vibration and Noise, 48395, American Society of Mechanical Engineers, Chicago, USA.

[15] Hotzel R. and Fliess M.(1998). On linear system with a fractional derivation: Introductory theory and examples, Mathematics and Computers in Simulation 45 (3): 385-395.

[16] Ichise M., Nagayanagi Y. and Kojima T. (1971). An analog simulation of non integer order transfer functions for analysis of electrode processes, Journal of Electroanalytical Chemistry 33(2): 253-265.

[17] Kilbas A. A., Srivasta H.M. and Trujillo J. J. (2006). Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam.

[18] Lakshmikantham D. T. V. (1998). Theory of Difference Equations: Numerical Methods and Applications, Academic Press, New York.

[19] Manabe S. (1960). The non-integer integral and its application to control systems, Japanese Institute of Electrical Engineers Journal 80(860): 589-597.

[20] Matignon D. (1994). Reprèsentation en variables d'ètat de modèles de guides d'ondes avec dèrivation fractionnaire, Ph.D. thesis, Universitè Paris XI, France.

[21] Matignon D., d'Andrèa Novel B., Depalle P. and Oustaloup A. (1994). Viscothermal Losses in Wind Instruments: A Non-Integer Model, Academic Verlag, Berlin.

[22] Matignon D. and d'Andrèa-Novel B. (1996). Some results on controllability and observability of finite-dimensional fractional differential systems, Proceedings of the IMACS, IEEE SMC Conference, Lille, France, pp. 952-956.

[23] Matignon D. (1996). Stability results on fractional differential with application to control processing, Proceedings of the IAMCS, IEEE SMC Conference, Lille, France, pp. 963-968.

[24] Miller K. S. and Ross B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations,Wiley, New York.

[25] Mittag-Leffler G. (1904). Sur la reprèsentation analytique d'une branche uniforme d'une fonction monogène, Acta Mathematica 29: 10-181.

[26] Oldham K. B. and Spanier J. (1974). The Fractional Calculus, Academic Press, New York.

[27] Oustaloup A. (1983). Systèmes asservis linèaires d'ordre fractionnaire, Masson, Paris.

[28] Oustaloup A. (1995). La Dèrivation non entière: Thèorie, synthèse et applications, Hermès, Paris.

[29] Peng Y., Guangming X. and Long W. (2003). Controllability of linear discrete-time systems with time-delay in state, available at dean.pku.edu.cn/bksky/1999tzlwj/4.pdf.

[30] Podlubny I. (1999). Fractional Differential Equations, Academic Press, San Diego.

[31] Raynaud H. F., Zergainoh, A. (2000). State-space representation for fractional-order controllers, Automatica 36(7): 1017-1021.

[32] Sabatier J., Cois O. and Oustaloup A. (2002). Commande de systèmes non entiers par placement de pôles, Deuxième Confèrence Internationale Francophone d'Automatique, CIFA, Nantes, France.

[33] Samko S. G., Kilbas A. A. and Marichev O. I. (1993). Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Amsterdam.

[34] Sierociuk D. and Dzieli´nski A. (2006). Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation, International Journal of Applied Mathematics and Computer Science 16(1): 129-140.

[35] Valerio D. and Sa da Costa J. (2004). Non-integer order control of a flexible robot, Proceedings of the IFAC Workshop on Fractional Differentiation and its Applications, FDA'04, Bordeaux, France.

[36] Vinagre B. M., Monje C. A. and Caldero A. J. (2002). Fractional order systems and fractional order actions, Tutorial Workshop 2: Fractional Calculus Applications in Automatic Control and Robotics, 41st IEEE CDC, Las Vegas, USA.