Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2008_18_1_a5, author = {Li, Y. and Kummert, A. and Boschen, F. and Herzog, H.}, title = {Interpolation-based reconstruction methods for tomographic imaging in {3D} positron emission tomography}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {63--73}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_1_a5/} }
TY - JOUR AU - Li, Y. AU - Kummert, A. AU - Boschen, F. AU - Herzog, H. TI - Interpolation-based reconstruction methods for tomographic imaging in 3D positron emission tomography JO - International Journal of Applied Mathematics and Computer Science PY - 2008 SP - 63 EP - 73 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_1_a5/ LA - en ID - IJAMCS_2008_18_1_a5 ER -
%0 Journal Article %A Li, Y. %A Kummert, A. %A Boschen, F. %A Herzog, H. %T Interpolation-based reconstruction methods for tomographic imaging in 3D positron emission tomography %J International Journal of Applied Mathematics and Computer Science %D 2008 %P 63-73 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_1_a5/ %G en %F IJAMCS_2008_18_1_a5
Li, Y.; Kummert, A.; Boschen, F.; Herzog, H. Interpolation-based reconstruction methods for tomographic imaging in 3D positron emission tomography. International Journal of Applied Mathematics and Computer Science, Tome 18 (2008) no. 1, pp. 63-73. http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_1_a5/
[1] Beutel J., Kundel H. L. and Van Metter R. L. (2000). Handbook of Medical Imaging, SPIE Press, Bellingham, Washington.
[2] Bendriem B. and Townsend D.W. (1998). The Theory and Practice of 3D PET, Kluwer Academic Publishers, Dordrecht.
[3] De Berg M., Van Kreveld M., Overmars M. and Schwarzkopf O. (1997). Computational Geometry, Springer-Verlag, Berlin.
[4] Fisher N. I. and Embleton B.J. (1987). Statistical Analysis of Spherical Data, Cambridge University Press, Cambridge.
[5] Fortune S. (1987). A SWEEPLINE algorithm for Voronoi diagrams, Algorithmica 2(2): 153-174.
[6] Jackson J. I., Meyer C. H., Nishimura D.G. and Macovski A. (1991). Selection of a convolution function for Fourier inversion using gridding, IEEE Transactions on Medical Imaging 10(3): 473-478.
[7] Kak A. C. and Slaney M. (1988). Principles of Computerized Tomographic Imaging, New York, IEEE Press.
[8] Li Y., Kummert A., Boschen F. and H. Herzog (2005). Investigation on projection signals in 3D PET systems, Proceedings of the 12th International Conference on Biomedical Engineering, Singapore.
[9] Li Y., Kummert A., Boschen F. and H. Herzog (2005). Spectral properties of projection signals in 3-D tomography, Proceedings of the 16th Triennial World Congress of the International Federation of Automatic Control, Prague, Czech Republic.
[10] Li Y., Kummert A. and Herzog H. (2006). Direct Fourier method in 3D PET using accurately determined frequency sample distribution, Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, New York, USA.
[11] Li Y., Kummert A., Li H. and Herzog H. (2006). Evaluation of the direct Fourier method for 3D-PET in the case of accurately determined projection data, Proceedings of the 11th IASTED International Conference on Signal and Image Processing, Honolulu, USA.
[12] Matej S. and Lewitt R. M. (2001). 3D-FRP: Direct Fourier reconstruction with Fourier reprojection for fully 3-D PET, IEEE Transactions on Medical Imaging 48(4): 1378-1385.
[13] Moon T.K. (1996). The expectation-maximization algorithm, IEEE Signal Processing Magazine 13(6): 47-60.
[14] Schomberg H. and Timmer J. (1995). The gridding method for image reconstruction by Fourier transformation, IEEE Transactions on Medical Imaging 14(3): 596-607.
[15] Thevenaz P., Blu T. and Unser M. (2000). Interpolation revisited, IEEE Transactions on Medical Imaging 19(7): 739-758.