Nonlinear image processing and filtering: a unified approach based on vertically weighted regression
International Journal of Applied Mathematics and Computer Science, Tome 18 (2008) no. 1, pp. 49-61.

Voir la notice de l'article provenant de la source Library of Science

A class of nonparametric smoothing kernel methods for image processing and filtering that possess edge-preserving properties is examined. The proposed approach is a nonlinearly modified version of the classical nonparametric regression estimates utilizing the concept of vertical weighting. The method unifies a number of known nonlinear image filtering and denoising algorithms such as bilateral and steering kernel filters. It is shown that vertically weighted filters can be realized by a structure of three interconnected radial basis function (RBF) networks. We also assess the performance of the algorithm by studying industrial images.
Keywords: image filtering, vertically weighted regression, nonlinear filters
Mots-clés : filtr nieliniowy, filtracja obrazu, regresja ważona
@article{IJAMCS_2008_18_1_a4,
     author = {Rafaj{\l}owicz, E. and Pawlak, M. and Steland, A.},
     title = {Nonlinear image processing and filtering: a unified approach based on vertically weighted regression},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {49--61},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_1_a4/}
}
TY  - JOUR
AU  - Rafajłowicz, E.
AU  - Pawlak, M.
AU  - Steland, A.
TI  - Nonlinear image processing and filtering: a unified approach based on vertically weighted regression
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2008
SP  - 49
EP  - 61
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_1_a4/
LA  - en
ID  - IJAMCS_2008_18_1_a4
ER  - 
%0 Journal Article
%A Rafajłowicz, E.
%A Pawlak, M.
%A Steland, A.
%T Nonlinear image processing and filtering: a unified approach based on vertically weighted regression
%J International Journal of Applied Mathematics and Computer Science
%D 2008
%P 49-61
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_1_a4/
%G en
%F IJAMCS_2008_18_1_a4
Rafajłowicz, E.; Pawlak, M.; Steland, A. Nonlinear image processing and filtering: a unified approach based on vertically weighted regression. International Journal of Applied Mathematics and Computer Science, Tome 18 (2008) no. 1, pp. 49-61. http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_1_a4/

[1] Barash D. (2002). A fundamental relationship between bilateral filtering, adaptive smoothing, and the nonlinear diffusion equation, IEEE Transactions on Pattern Analysis and Machine Intelligence 24(6): 844-847.

[2] Barner K., Sarham A. and Hadie R. (1999). Partition-based weighted sum filters for image restoration, IEEE Transactions on Image Procedings 8(5): 740-745.

[3] Barner K.E. and Arce G.R. (2004). Nonlinear Signal and Image Processing: Theory, Methods, and Applications, CRC Press, Boca Raton, FL.

[4] Buades A., Coll B. and Morel J. (2005). A review of image denoising algorithms, with a new one, SIAM Journal on Multiscale Modeling and Simulation 4(2): 490-530.

[5] Chiu C., Glad K., Godtliebsen F. and Marron J. (1998). Edgepreserving smoother for image processing, Journal of the American Statistical Association 93(442): 526-541.

[6] Efromovich S. (1999). Nonparametric Curve Estimation: Methods, Theory and Applications, Springer-Verlag, New York.

[7] Elad M. (2002): On the origin of the bilateral filter and ways to improve it, IEEE Transactions on Image Processing 11(10): 1141-1150.

[8] Hall P. and Koch S. (1992). On the feasibility of cross-validation in image analysis, SIAM Journal on Applied Mathematics 52(1): 292-313.

[9] Jain A. (1989): Fundamentals of Digital Image Processing, Prentice Hall, New York.

[10] Krzyżak A., Rafajłowicz E. and Skubalska-Rafajłowicz E. (2001). Clipped median and space-filling curves in image filtering, Nonlinear Analysis 47(1): 303--314.

[11] Lee J. (1983). Digital image smoothing and the sigma filter, Computer Vision, Graphics and Image Processing 24(2): 255-269.

[12] Mitra S. and Sicuranza G. (2001). Nonlinear Image Processing, Academic Press, San Diego.

[13] P. Saint-Marc J.S., and Medioni G. C. (1991). Adaptive smoothing: A general tool for early vision, IEEE Transations on Pattern Analysis and Machine Intelligence 13(6): 514-529.

[14] Pawlak M. and Liao S. X. (2002). On the recovery of a function on a circular domain, IEEE Transactions on Information Theory 48(10): 2736-2753.

[15] Pawlak M. and Rafajłowicz E. (1999). Vertically weighted regression - A tool for nonlinear data anlysis and constructing control charts, Statistical Archives 84: 367-388.

[16] Pawlak M. and Rafajłowicz E. (2001). Jump preserving signal reconstruction using vertical weighting, Nonlinear Analysis 47(1): 327-338.

[17] Pawlak M., Rafajłowicz E. and Steland A. (2004). On detecting jumps in time series: Nonparametric setting, Nonparametric Statistics 16(3-4): 329-347.

[18] Polzehl J. and Spokoiny V. (2000). Adaptive weights smoothing with applications to image restoration, Journal of the Royal Statistical Society B 62(2): 335-354.

[19] Smith S. and Brady J. M. (1997). SUSAN - A new approach to low level image processing, International Journal of Computer Vision 23(1): 45-78.

[20] Steland A. (2003). Jump-preserving monitoring of dependent processes using pilot estimators, Statistics and Decision 21(4): 343-366.

[21] Steland A. (2005). On the distribution of the clipping median under a mixture model, Statistics and Probability Letters 71(1): 1-13.

[22] Takeda H., Farsiu S., and Milanfar P. (2007). Kernel regression for image processing and reconstruction, IEEE Transactions on Image Processing 16(2): 349-366.

[23] Tomasi C. and Manduchi R. (1998). Bilateral filtering for gray and color images, IEEE International Conference on Computer Vision, pp. 839-845.

[24] van der Vaart A. (1998). Asymptotic Statistics, Cambridge University Press, Cambridge, 1998.

[25] Wasserman L. (2006). All of Nonparametric Statistics, Springer-Verlag, New York.

[26] Yaroslavsky L. (1985). Digital Picture Processing, Springer-Verlag, New York.