Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2008_18_1_a3, author = {Skubalska-Rafaj{\l}owicz, E.}, title = {Local correlation and entropy maps as tools for detecting defects in industrial images}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {41--47}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_1_a3/} }
TY - JOUR AU - Skubalska-Rafajłowicz, E. TI - Local correlation and entropy maps as tools for detecting defects in industrial images JO - International Journal of Applied Mathematics and Computer Science PY - 2008 SP - 41 EP - 47 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_1_a3/ LA - en ID - IJAMCS_2008_18_1_a3 ER -
%0 Journal Article %A Skubalska-Rafajłowicz, E. %T Local correlation and entropy maps as tools for detecting defects in industrial images %J International Journal of Applied Mathematics and Computer Science %D 2008 %P 41-47 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_1_a3/ %G en %F IJAMCS_2008_18_1_a3
Skubalska-Rafajłowicz, E. Local correlation and entropy maps as tools for detecting defects in industrial images. International Journal of Applied Mathematics and Computer Science, Tome 18 (2008) no. 1, pp. 41-47. http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_1_a3/
[1] Altmann J. and Reitbock H.J.P. (1984). A fast correlation method for scale and translation invariant pattern recognition, IEEE Transactions an Pattern Analysis and Machine Intelligence 6(1): 46-57.
[2] Beirlant J., Dudewicz E., Gyorfi L., van der Meulen EC (1997). Nonparametric entropy estimation: An overview, International Journal of Mathematical and Statistical Sciences 6(1):17-39.
[3] Bishop C.M. 1995. Neural Networks for Pattern Recognition, Oxford Press.
[4] Brink A. D. and Pendock N. E. (1996). Minimum cross-entropy threshold selection, Pattern Recognition 29(1): 179-188.
[5] Dong P., Bilbro G.L. and Mo-Yuen Chow (2006). Implementation of artificial neural network for real time applications using field programmable analog arrays, Procedings of the International Joint Conference on Neural Networks, Vancouver, BC, Canada, pp. 1518-1524.
[6] Faugeras O. (1993). Three-Dimensional Computer Vision, MIT Press, Cambridge.
[7] Forsyth D.A. and Ponce J. (2003). Computer Vision: Modern Approach, Prentice Hall, Upper Saddle River, NJ.
[8] Goshtasby A., Gage S. H. and Bartolic J. F. (1984). A two-stage cross-correlation approach to template matching, IEEE Transactions on Pattern Analysis and Machine Intelligence 6(3): 374-378.
[9] Haykin S. (1999). Neural Networks. A Comprehensive Foundation, 2nd Ed. Prentice Hall, Upper Saddle River, NJ.
[10] Hero A.O. and Michel O.J.J. (1999). Asymptotic theory of greedy approximations to minimal-point random graphs, IEEE Transactions on Information Theory 45(6): 1921-1938.
[11] Kittler J., Illingworth J. and Foglein J. (1985). Threshold selection based on a simple image statistic, Computer Vision, Graphics, and Image Processing 30(2): pp. 125-147.
[12] Maher J., Mc Ginley B., Rocke P. and Morgan F. (2006). Intrinsic hardware evolution of neural networks in reconfigurable analogue and digital devices, Proceedings of 14th Annual Symposium on Field-Programmable Custom Computing Machines FCCM' 06, Napa, USA, pp. 321-322.
[13] Mokkadem A. (1989). Estimation of the entropy and information of absolutely continuous random variables, IEEE Transactions on Information Theory 35(1): 193-196.
[14] Otsu N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics 9(1): 62-66.
[15] Pal N.R. (1996). On minimum cross-entropy thresholding, Pattern Recognition 29(4): 575-580.
[16] Pratt W.K. (2001). Digital Image Processing: PIKS Inside, 3rd Ed., John Wiley and Sons, New York.
[17] Ritter G.X. and Wilson J.N. (2001). Handbook of Computer Vision Algorithms in Image Algebra, 2nd Ed., CRC Press, Boca Raton, FL.
[18] Sezgin M. and Sankur B. (2004). Survey over image thresholding techniques and quantitative performance evaluation, Journal of Electronic Imaging 13(1): 146-168.
[19] Tsai D., Lin Ch., and Chen J. (2003). The evolution of normalized cross correlation for defect detection, Pattern Recognition Letters 24(15): 2525-2535.
[20] Zhu S.C.,Wu Y. andMumford D. (1997).Minimax entropy principle and its application to texture modeling, Neural Computation 9(8): 1627-1660.
[21] Zhu S.C., Wu Y. Mumford D. (1998). Filters, random fields and maximum entropy (FRAME): Towards a unified theory for texture modeling, International Journal of Computer Vision 27(2): 107-126 .