Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2007_17_4_a1, author = {Zhai, G. and Xu, X. and Lin, H. and Liu, D.}, title = {Extended {Lie} algebraic stability analysis for switched systems with continuous-time and discrete{\textendash}time subsystems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {447--454}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a1/} }
TY - JOUR AU - Zhai, G. AU - Xu, X. AU - Lin, H. AU - Liu, D. TI - Extended Lie algebraic stability analysis for switched systems with continuous-time and discrete–time subsystems JO - International Journal of Applied Mathematics and Computer Science PY - 2007 SP - 447 EP - 454 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a1/ LA - en ID - IJAMCS_2007_17_4_a1 ER -
%0 Journal Article %A Zhai, G. %A Xu, X. %A Lin, H. %A Liu, D. %T Extended Lie algebraic stability analysis for switched systems with continuous-time and discrete–time subsystems %J International Journal of Applied Mathematics and Computer Science %D 2007 %P 447-454 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a1/ %G en %F IJAMCS_2007_17_4_a1
Zhai, G.; Xu, X.; Lin, H.; Liu, D. Extended Lie algebraic stability analysis for switched systems with continuous-time and discrete–time subsystems. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 4, pp. 447-454. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a1/
[1] Agrachev A.A. and Liberzon D. (2001): Lie-algebraic stability criteria for switched systems. SIAM Journal on Control and Optimization, Vol. 40, No. 1, pp. 253-269.
[2] DeCarlo R., Branicky M.S., Pettersson S. and Lennartson B. (2000): Perspectives and results on the stability and stabilizability of hybrid systems. Proceedings of the IEEE, Vol. 88, No. 7, pp. 1069-1082.
[3] Gorbatsevich V.V., Onishchik A.L. and Vinberg E.B. (1994): Structure of Lie Groups and Lie Algebras. Berlin: Springer.
[4] Liberzon D. and Tempo R. (2003): Gradient algorithm for finding common Lyapunov functions. Proceedings of the 42nd IEEE Conference on Decision and Control, Hawaii, USA, pp. 4782-4787.
[5] Liberzon D. (2003): Switching in Systems and Control. Boston: Birkhäuser.
[6] Liberzon D. and Morse A.S. (1999): Basic problems in stability and design of switched systems. IEEE Control Systems Magazine, Vol. 19, No. 5, pp. 59-70.
[7] Liberzon D., Hespanha J.P. and Morse A.S. (1999): Stability of switched systems: A Lie-algebraic condition. Systems and Control Letters, Vol. 37, No. 3, pp. 117-122.
[8] Narendra K.S. and Balakrishnan J. A common Lyapunov function for stable LTI systems with commuting A-matrices. IEEE Transactions on Automatic Control, Vol. 39, No. 12, pp. 2469-2471.
[9] Samelson H. (1969): Notes on Lie Algebra. New York: Van Nostrand Reinhold.
[10] Zhai G. (2003): Stability and L2 gain analysis of switched symmetric systems, In: Stability and Control of Dynamical Systems with Applications, (D. Liu and P.J. Antsaklis, Eds.), Boston: Birkhäuser, pp. 131-152.
[11] Zhai G. (2001a): Quadratic stabilizability of discrete-time switched systems via state and output feedback. Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL, pp. 2165-2166.
[12] Zhai G., Hu B., Yasuda K. and Michel A.N. (2002a): Stability and L2 gain analysis of discrete-time switched systems. Transactions of the Institute of Systems, Control and Information Engineers, Vol. 15, No. 3, pp. 117-125.
[13] Zhai G., Chen X., IkedaM. and Yasuda K. (2002b): Stability and L2 gain analysis for a class of switched symmetric systems. Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, NV, pp. 4395-4400.
[14] Zhai G., Lin H., Michel A.N., and Yasuda K. (2004): Stability analysis for switched systems with continuous-time and discrete-time subsystems. Proceedings of the American Control Conference, Boston, MA, pp. 4555-4560.
[15] Zhai G., Xu X., Lin H., and Michel A.N. (2006): Analysis and design of switched normal systems. Nonlinear Analysis, Vol. 65, No. 12, pp. 2248-2259.
[16] Zhai G., Hu B., Yasuda K. and Michel A.N. (2001b): Stability analysis of switched systems with stable and unstable subsystems: An average dwell time approach. International Journal of Systems Science, Vol. 32, No. 8, pp. 1055-1061.