Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2007_17_4_a0, author = {Zerrik, E. and Larhrissi, R. and Bourray, H.}, title = {An output controllability problem for semilinear distributed hyperbolic systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {437--446}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a0/} }
TY - JOUR AU - Zerrik, E. AU - Larhrissi, R. AU - Bourray, H. TI - An output controllability problem for semilinear distributed hyperbolic systems JO - International Journal of Applied Mathematics and Computer Science PY - 2007 SP - 437 EP - 446 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a0/ LA - en ID - IJAMCS_2007_17_4_a0 ER -
%0 Journal Article %A Zerrik, E. %A Larhrissi, R. %A Bourray, H. %T An output controllability problem for semilinear distributed hyperbolic systems %J International Journal of Applied Mathematics and Computer Science %D 2007 %P 437-446 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a0/ %G en %F IJAMCS_2007_17_4_a0
Zerrik, E.; Larhrissi, R.; Bourray, H. An output controllability problem for semilinear distributed hyperbolic systems. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 4, pp. 437-446. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a0/
[1] Brezis H. (1993): Analyse fonctionnelle. Théorie et applications. - Paris: Masson.
[2] Da Prato G. , Pritchard A. and Zabczyk J. (1991): On minimum energy problems. SIAM Journal on Control and Optimization, Vol. 29, pp. 209-221.
[3] De Souza F., J.A.M., and A.J.Pritchard (1985): Control of semilinear distributed parameter systems. Telecommunication and Control, INPE, Sao José dos Campos, Brazil, pp. 160-164.
[4] De Souza F. J.A.M (1985): Control of nonlinear ditributed parameter systems. In: Proc. IV Coloquio de Control Automatico (Ibarra-Zannatha, Ed.), Centro de investigation y Estudios Avanzados del instituto Politecnico Nacional de Mexico, Mexico, Vol. 1 , pp. 37-43.
[5] El Jai A., Zerrik E., Simon M. C. and Pritchard A. J. (1995): Regional controllability of distributed parameter systems. International Journal of Control, Vol. 62, No. 6, pp. 1351-1365.
[6] Fabre C. , Puel J. P. and Zuazua E. (1995): Approximate controllabiliy of the semilinear heat equation, Proceedings of the Royal Society of Edinburgh, Vol. 125 A, pp. 31-61.
[7] E. (1997): Null controllability of the proximate heat equation, ESAIM: Control Optimization and Calculus of Variations, Vol. 2, pp. 87-103.
[8] Henry D. (1981): Geometric Theory of Semilinear Parabolic Systems.
[9] Kassara K. and El Jaï A. (1983): Algorithme pour la commande d'une classe de systèmes à paramètres répartis non linéaires. Revue marocaine d'automatique, d'informatique et de traitement de signal, Vol. 1, No. 2, pp. 95-117.
[10] Klamka J. (2002): Constrained exact controllability of semilinear systems. Systems and Control Letters, Vol. 47, No. 2, pp. 139-147.
[11] Klamka J. (2001): Constrained controllability of semilinear systems. Nonlinear Analysis, Vol. 47, pp. 2939-2949.
[12] Klamka J. (2000): Schauder's fixed point theorem in nonlinear controllability problem. Control and Cybernetics, Vol. 29, No. 1, pp. 153-165.
[13] Klamka J. (1999): Constrained conllability of dynamical systems. International Journal of Applied Mathematics and Computer Science, Vol. 9, No. 2, pp. 231-244.
[14] Klamka J. (1998): Controllability of second order semilinear infinite-dimensional dynamical systems. Applied Mathematics and Computer Science, Vol. 8, No. 3, pp. 459-470.
[15] Klamka J. (1991): Controllability of Dynamical Systems, Dordrecht: Kluwer Academic Publishers.
[16] Lions J.L. (1988): Contrôlabilité Exacte. Perturbations et Stabilisation des Systèmes Distribués, Tome 1, Contrôlabilité Exacte. -Paris: Masson.
[17] Pazy A. (1983): Semigroups of Linear Operators and Applications to Partial Differential Equations.-Berlin: Springer-Verlag.
[18] Zeidler E. (1990): Nonlinear Functional Analysis and Its Applications II/A. Linear Applied Functional Analysis, Springer.
[19] Zuazua E. (1990): Exact controllability for the semilinear wave equation. Journal de Mathématiques Pures et Appliquées, 69, pp. 1-31.
[20] Zeidler E. (1999): Applied Functional Analysis. Applications to Mathematical Physics.- Springer.
[21] Zerrik E., Bourray H. and El Jai A. (2004): Regional observability of semilinear distributed parabolic systems. International Journal of Dynamical and Control Systems, Vol. 10, No. 3, pp. 413-430.
[22] Zerrik E. and Larhrissi R. (2002): Regional boundary controllability of hyperbolic systems. Numerical approach. International Journal of Dynamical and Control Systems, Vol. 8, No. 3, pp. 293-311.
[23] Zerrik E. and Larhrissi R. (2001): Regional Target Control of the wave Equation. International Journal of Systems Science, Vol. 32, No. 10, pp. 1233-1242.
[24] Zerrik E., Boutoulout A. and El Jaï A. (2000): Actuators and regional boundary controllability. International Journal of Systems Science, Vol. 31, No. 1 , pp. 73-82.