Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2007_17_3_a4, author = {Crouseilles, N. and Latu, G. and Sonnendr\"ucker, E.}, title = {Hermite spline interpolation on patches for parallelly solving the {Vlasov-Poisson} equation}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {335--349}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a4/} }
TY - JOUR AU - Crouseilles, N. AU - Latu, G. AU - Sonnendrücker, E. TI - Hermite spline interpolation on patches for parallelly solving the Vlasov-Poisson equation JO - International Journal of Applied Mathematics and Computer Science PY - 2007 SP - 335 EP - 349 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a4/ LA - en ID - IJAMCS_2007_17_3_a4 ER -
%0 Journal Article %A Crouseilles, N. %A Latu, G. %A Sonnendrücker, E. %T Hermite spline interpolation on patches for parallelly solving the Vlasov-Poisson equation %J International Journal of Applied Mathematics and Computer Science %D 2007 %P 335-349 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a4/ %G en %F IJAMCS_2007_17_3_a4
Crouseilles, N.; Latu, G.; Sonnendrücker, E. Hermite spline interpolation on patches for parallelly solving the Vlasov-Poisson equation. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 3, pp. 335-349. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a4/
[1] Bermejo R. (1991): Analysis of an algorithm for the Galerkincharacteristic method. Numerische Mathematik, Vol. 60, pp. 163-194.
[2] Besse N. and Sonnendrücker E. (2003): Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space. Journal of Computational Physics, Vol. 191, pp. 341-376.
[3] Birdsall C.K. and Langdon A.B.: Plasma Physics via Computer Simulation. Bristol: Institute of Physics Publishing.
[4] Bouchut F., Golse F. and Pulvirenti M. (2000): Kinetic Equations and Asymptotic Theory. Paris: Gauthier-Villars.
[5] DeBoor C. (1978): A Practical Guide to Splines. New-York: Springer.
[6] Campos-Pinto M. and Merhenberger M. (2004): Adaptive Numerical Resolution of the Vlasov Equation.
[7] Cheng C.Z. and Knorr G. (1976): The integration of the Vlasov equation in configuration space. Journal of Computational Physics, Vol. 22, p. 330.
[8] Coulaud O., Sonnendrücker E., Dillon E., Bertrand P. and Ghizzo A. (1999): Parallelization of semi-Lagrangian Vlasov codes. Journal of Plasma Physics, Vol. 61, pp. 435-448.
[9] Feix M.R., Bertrand P. and Ghizzo A. (1994): Title? In: Kinetic Theory and Computing, (B. Perthame, Ed.).
[10] Filbet F., Sonnendrücker E. and Bertrand P. (2001): Conservative numerical schemes for the Vlasov equation. Journal of Computational Physics, Vol. 172, pp. 166-187.
[11] Filbet F. and Sonnendrücker E. (2003): Comparison of Eulerian Vlasov solvers. Computer Physics Communications, Vol. 151, pp. 247-266.
[12] Filbet F. and Violard E. (2002): Parallelization of a Vlasov Solver by Communication Overlapping. Proceedings PDPTA.
[13] Glassey R.T. (1996): The Cauchy Problem in Kinetic Theory. Philadelphia, PA: SIAM.
[14] Ghizzo A., Bertrand P., Begue M.L., Johnston T.W. and Shoucri M. (1996): A Hilbert-Vlasov code for the study of high frequency plasma beatwave accelerator. IEEE Transactions on Plasma Science, Vol. 24.
[15] Ghizzo A., Bertrand P., Shoucri M., Johnston T.W., Filjakow E. and Feix M.R. (1990): A Vlasov code for the numerical simulation of stimulated Raman scattering. Journal of Computational Physis, Vol. 90, pp. 431-457.
[16] Grandgirard V., Brunetti M., Bertrand P., Besse N., Garbet N., Ghendrih P., Manfredi G., Sarrazin Y., Sauter O., Sonnendrücker E., Vaclavik J. and Villard L. (2006): A drift-kinetic semi-Lagrangian 4D code for ion turbulence simulation. Journal of Computational Physics, Vol. 217, pp. 395-423.
[17] Gutnic M., Haefele M., Paun I. and Sonnendrücker E. (2004): Vlasov simulation on an adaptive phase space grid. Computer Physical Communications, Vol. 164, pp. 214-219.
[18] Hammerlin G. and Hoffmann K.H. (1991): Numerical Mathematics, New-York: Springer.
[19] Kim C.C. and Parker S.E. (2000): Massively parallel threedimensional toroidal gyrokinetic flux-tube turbulence simulation. Journal of Computational Physics, Vol. 161, pp. 589-604.
[20] McKinstrie C.J., Giacone R.E. and Startsev E.A. (1999): Accurate formulas for the Landau damping rates of electrostatic waves. Physics of Plasmas, Vol. 6, pp. 463-466.
[21] Manfredi G. (1997): Long time behaviour of strong linear Landau damping. Physical Review Letters, Vol. 79.
[22] Shoucri M. and Knorr G. (1974): Numerical integration of the Vlasov equation. Journal of Computational Physics, Vol. 14, pp. 84-92.
[23] Sonnendrücker E., Filbet F., Friedman A., Oudet E. and Vay J.L. (2004): Vlasov simulation of beams on a moving phase space grid. Computer Physics Communications, Vol. 164, pp. 390-395.
[24] Sonnendrücker E., Roche J., Bertrand P. and Ghizzo A. (1999): The semi-Lagrangian method for the numerical resolution of the Vlasov equations. Journal of Computational Physics, Vol. 149, pp. 201-220.
[25] Staniforth A. and Coté J. (1991): Semi-Lagrangian integration schemes for atmospheric models - A review. Monthly Weather Review, Vol. 119, pp. 2206-2223.