Hermite spline interpolation on patches for parallelly solving the Vlasov-Poisson equation
International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 3, pp. 335-349.

Voir la notice de l'article provenant de la source Library of Science

This work is devoted to the numerical simulation of the Vlasov equation using a phase space grid. In contrast to Particle- In-Cell (PIC) methods, which are known to be noisy, we propose a semi-Lagrangian-type method to discretize the Vlasov equation in the two-dimensional phase space. As this kind of method requires a huge computational effort, one has to carry out the simulations on parallel machines. For this purpose, we present a method using patches decomposing the phase domain, each patch being devoted to a processor. Some Hermite boundary conditions allow for the reconstruction of a good approximation of the global solution. Several numerical results demonstrate the accuracy and the good scalability of the method with up to 64 processors. This work is a part of the CALVI project.
Keywords: Vlasov-Poisson equation, semi-Lagrangian method, parallelism
Mots-clés : równanie Vlasova-Poissona, metoda Lagrangiana, równoległość
@article{IJAMCS_2007_17_3_a4,
     author = {Crouseilles, N. and Latu, G. and Sonnendr\"ucker, E.},
     title = {Hermite spline interpolation on patches for parallelly solving the {Vlasov-Poisson} equation},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {335--349},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a4/}
}
TY  - JOUR
AU  - Crouseilles, N.
AU  - Latu, G.
AU  - Sonnendrücker, E.
TI  - Hermite spline interpolation on patches for parallelly solving the Vlasov-Poisson equation
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2007
SP  - 335
EP  - 349
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a4/
LA  - en
ID  - IJAMCS_2007_17_3_a4
ER  - 
%0 Journal Article
%A Crouseilles, N.
%A Latu, G.
%A Sonnendrücker, E.
%T Hermite spline interpolation on patches for parallelly solving the Vlasov-Poisson equation
%J International Journal of Applied Mathematics and Computer Science
%D 2007
%P 335-349
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a4/
%G en
%F IJAMCS_2007_17_3_a4
Crouseilles, N.; Latu, G.; Sonnendrücker, E. Hermite spline interpolation on patches for parallelly solving the Vlasov-Poisson equation. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 3, pp. 335-349. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a4/

[1] Bermejo R. (1991): Analysis of an algorithm for the Galerkincharacteristic method. Numerische Mathematik, Vol. 60, pp. 163-194.

[2] Besse N. and Sonnendrücker E. (2003): Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space. Journal of Computational Physics, Vol. 191, pp. 341-376.

[3] Birdsall C.K. and Langdon A.B.: Plasma Physics via Computer Simulation. Bristol: Institute of Physics Publishing.

[4] Bouchut F., Golse F. and Pulvirenti M. (2000): Kinetic Equations and Asymptotic Theory. Paris: Gauthier-Villars.

[5] DeBoor C. (1978): A Practical Guide to Splines. New-York: Springer.

[6] Campos-Pinto M. and Merhenberger M. (2004): Adaptive Numerical Resolution of the Vlasov Equation.

[7] Cheng C.Z. and Knorr G. (1976): The integration of the Vlasov equation in configuration space. Journal of Computational Physics, Vol. 22, p. 330.

[8] Coulaud O., Sonnendrücker E., Dillon E., Bertrand P. and Ghizzo A. (1999): Parallelization of semi-Lagrangian Vlasov codes. Journal of Plasma Physics, Vol. 61, pp. 435-448.

[9] Feix M.R., Bertrand P. and Ghizzo A. (1994): Title? In: Kinetic Theory and Computing, (B. Perthame, Ed.).

[10] Filbet F., Sonnendrücker E. and Bertrand P. (2001): Conservative numerical schemes for the Vlasov equation. Journal of Computational Physics, Vol. 172, pp. 166-187.

[11] Filbet F. and Sonnendrücker E. (2003): Comparison of Eulerian Vlasov solvers. Computer Physics Communications, Vol. 151, pp. 247-266.

[12] Filbet F. and Violard E. (2002): Parallelization of a Vlasov Solver by Communication Overlapping. Proceedings PDPTA.

[13] Glassey R.T. (1996): The Cauchy Problem in Kinetic Theory. Philadelphia, PA: SIAM.

[14] Ghizzo A., Bertrand P., Begue M.L., Johnston T.W. and Shoucri M. (1996): A Hilbert-Vlasov code for the study of high frequency plasma beatwave accelerator. IEEE Transactions on Plasma Science, Vol. 24.

[15] Ghizzo A., Bertrand P., Shoucri M., Johnston T.W., Filjakow E. and Feix M.R. (1990): A Vlasov code for the numerical simulation of stimulated Raman scattering. Journal of Computational Physis, Vol. 90, pp. 431-457.

[16] Grandgirard V., Brunetti M., Bertrand P., Besse N., Garbet N., Ghendrih P., Manfredi G., Sarrazin Y., Sauter O., Sonnendrücker E., Vaclavik J. and Villard L. (2006): A drift-kinetic semi-Lagrangian 4D code for ion turbulence simulation. Journal of Computational Physics, Vol. 217, pp. 395-423.

[17] Gutnic M., Haefele M., Paun I. and Sonnendrücker E. (2004): Vlasov simulation on an adaptive phase space grid. Computer Physical Communications, Vol. 164, pp. 214-219.

[18] Hammerlin G. and Hoffmann K.H. (1991): Numerical Mathematics, New-York: Springer.

[19] Kim C.C. and Parker S.E. (2000): Massively parallel threedimensional toroidal gyrokinetic flux-tube turbulence simulation. Journal of Computational Physics, Vol. 161, pp. 589-604.

[20] McKinstrie C.J., Giacone R.E. and Startsev E.A. (1999): Accurate formulas for the Landau damping rates of electrostatic waves. Physics of Plasmas, Vol. 6, pp. 463-466.

[21] Manfredi G. (1997): Long time behaviour of strong linear Landau damping. Physical Review Letters, Vol. 79.

[22] Shoucri M. and Knorr G. (1974): Numerical integration of the Vlasov equation. Journal of Computational Physics, Vol. 14, pp. 84-92.

[23] Sonnendrücker E., Filbet F., Friedman A., Oudet E. and Vay J.L. (2004): Vlasov simulation of beams on a moving phase space grid. Computer Physics Communications, Vol. 164, pp. 390-395.

[24] Sonnendrücker E., Roche J., Bertrand P. and Ghizzo A. (1999): The semi-Lagrangian method for the numerical resolution of the Vlasov equations. Journal of Computational Physics, Vol. 149, pp. 201-220.

[25] Staniforth A. and Coté J. (1991): Semi-Lagrangian integration schemes for atmospheric models - A review. Monthly Weather Review, Vol. 119, pp. 2206-2223.