Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2007_17_3_a3, author = {Mehrenberger, M. and Violard, E.}, title = {A {Hermite-type} adaptive {semi-Lagrangian} scheme}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {329--334}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a3/} }
TY - JOUR AU - Mehrenberger, M. AU - Violard, E. TI - A Hermite-type adaptive semi-Lagrangian scheme JO - International Journal of Applied Mathematics and Computer Science PY - 2007 SP - 329 EP - 334 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a3/ LA - en ID - IJAMCS_2007_17_3_a3 ER -
Mehrenberger, M.; Violard, E. A Hermite-type adaptive semi-Lagrangian scheme. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 3, pp. 329-334. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a3/
[1] Besse N. and Sonnendrücker E. (2003): Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space. Journal of Computational Physics, Vol. 191, No. 2, pp. 341-376.
[2] Campos Pinto M. and Mehrenberger M. (2005): Adaptive numerical resolution of the Vlasov equation, In: Numerical Methods for Hyperbolic and Kinetic Problems (S. Cordier, T. Goudon, M. Gutnic, E. Sonnendrücker, Eds.). Zürich: European Mathematical Society, pp. 43-58.
[3] Campos Pinto M. and Mehrenberger M. (2005): Convergence of an adaptive scheme for the one-dimensional Vlasov-Poisson system. Technical Report No. RR-5519, INRIA Lorraine.
[4] Gutnic M., Haefele M., Paun I., Sonnendrücker E. (2004): Vlasov simulations on an adaptive phase-space grid. Computer Physics Communications, Vol. 164, No. 1-3, pp. 214-219.
[5] Gutnic M., Haefele M. and Latu G. (2005): A parallel Vlasov solver using a wavelet based adaptive mesh refinement. Proc. Int. Conf. Parallel Processing, ICPP'2005, 7thWorkshop High Performance Scientific and Engineering Computing, Oslo: IEEE Computer Society Press, pp. 181-188.
[6] Hoenen O., Mehrenberger M. and Violard E. (2004): Parallelization of an adaptive Vlasov solver, Proc. 11th European PVM/MPI Users' Group Conference, EuroPVM/MPI 2004, Berlin: Springer, pp. 430-435.
[7] Hoenen O. and Violard E. (2006): An efficient data structure for an adaptive Vlasov solver. Research Report RR 06-02, ICPS - LSIIT laboratory (CNRS UMR-7005).
[8] Hong D., Schumaker L.L. (2004); Surface compression using a space of C1 cubic splines with a hierarchical basis. Geometric Modelling Computing, Vol. 72, No. 1-2, pp. 79-92.
[9] Nakamura T. and Yabe T. (1999): Cubic interpolated propagation scheme for solving the hyperdimensional Vlasov-Poisson equation in phase space. Computer Physics Communications, Vol. 120, No. 2-3, pp. 122-154.
[10] Sonnendrücker E., Filbet F., Friedman A., Oudet E., Vay J. L. (2004): Vlasov simulation of beams on a moving phasespace grid. Computer Physics Communications, Vol. 164, No. 1-3, pp. 390-395.