A Hermite-type adaptive semi-Lagrangian scheme
International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 3, pp. 329-334.

Voir la notice de l'article provenant de la source Library of Science

We study a new Hermite-type interpolating operator arising in a semi-Lagrangian scheme for solving the Vlasov equation in the 2D phase space. Numerical results on uniform and adaptive grids are shown and compared with the biquadratic Lagrange interpolation introduced in (Campos Pinto and Mehrenberger, 2004) in the case of a rotating Gaussian.
Keywords: adaptive method, Vlasov equation, numerical simulation, Hermite operator
Mots-clés : metoda adaptacyjna, równanie Vlasova, symulacja numeryczna, operator hermitowski
@article{IJAMCS_2007_17_3_a3,
     author = {Mehrenberger, M. and Violard, E.},
     title = {A {Hermite-type} adaptive {semi-Lagrangian} scheme},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {329--334},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a3/}
}
TY  - JOUR
AU  - Mehrenberger, M.
AU  - Violard, E.
TI  - A Hermite-type adaptive semi-Lagrangian scheme
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2007
SP  - 329
EP  - 334
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a3/
LA  - en
ID  - IJAMCS_2007_17_3_a3
ER  - 
%0 Journal Article
%A Mehrenberger, M.
%A Violard, E.
%T A Hermite-type adaptive semi-Lagrangian scheme
%J International Journal of Applied Mathematics and Computer Science
%D 2007
%P 329-334
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a3/
%G en
%F IJAMCS_2007_17_3_a3
Mehrenberger, M.; Violard, E. A Hermite-type adaptive semi-Lagrangian scheme. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 3, pp. 329-334. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a3/

[1] Besse N. and Sonnendrücker E. (2003): Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space. Journal of Computational Physics, Vol. 191, No. 2, pp. 341-376.

[2] Campos Pinto M. and Mehrenberger M. (2005): Adaptive numerical resolution of the Vlasov equation, In: Numerical Methods for Hyperbolic and Kinetic Problems (S. Cordier, T. Goudon, M. Gutnic, E. Sonnendrücker, Eds.). Zürich: European Mathematical Society, pp. 43-58.

[3] Campos Pinto M. and Mehrenberger M. (2005): Convergence of an adaptive scheme for the one-dimensional Vlasov-Poisson system. Technical Report No. RR-5519, INRIA Lorraine.

[4] Gutnic M., Haefele M., Paun I., Sonnendrücker E. (2004): Vlasov simulations on an adaptive phase-space grid. Computer Physics Communications, Vol. 164, No. 1-3, pp. 214-219.

[5] Gutnic M., Haefele M. and Latu G. (2005): A parallel Vlasov solver using a wavelet based adaptive mesh refinement. Proc. Int. Conf. Parallel Processing, ICPP'2005, 7thWorkshop High Performance Scientific and Engineering Computing, Oslo: IEEE Computer Society Press, pp. 181-188.

[6] Hoenen O., Mehrenberger M. and Violard E. (2004): Parallelization of an adaptive Vlasov solver, Proc. 11th European PVM/MPI Users' Group Conference, EuroPVM/MPI 2004, Berlin: Springer, pp. 430-435.

[7] Hoenen O. and Violard E. (2006): An efficient data structure for an adaptive Vlasov solver. Research Report RR 06-02, ICPS - LSIIT laboratory (CNRS UMR-7005).

[8] Hong D., Schumaker L.L. (2004); Surface compression using a space of C1 cubic splines with a hierarchical basis. Geometric Modelling Computing, Vol. 72, No. 1-2, pp. 79-92.

[9] Nakamura T. and Yabe T. (1999): Cubic interpolated propagation scheme for solving the hyperdimensional Vlasov-Poisson equation in phase space. Computer Physics Communications, Vol. 120, No. 2-3, pp. 122-154.

[10] Sonnendrücker E., Filbet F., Friedman A., Oudet E., Vay J. L. (2004): Vlasov simulation of beams on a moving phasespace grid. Computer Physics Communications, Vol. 164, No. 1-3, pp. 390-395.