Iterative estimators of parameters in linear models with partially variant coefficients
International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 2, pp. 179-187.

Voir la notice de l'article provenant de la source Library of Science

A new kind of linear model with partially variant coefficients is proposed and a series of iterative algorithms are introduced and verified. The new generalized linear model includes the ordinary linear regression model as a special case. The iterative algorithms efficiently overcome some difficulties in computation with multidimensional inputs and incessantly appending parameters. An important application is described at the end of this article, which shows that this new model is reasonable and applicable in practical fields.
Keywords: linear model, parameter estimation, iterative algorithms, variant coefficients
Mots-clés : model liniowy, estymacja parametrów, algorytm iteracyjny, współczynnik zmienności
@article{IJAMCS_2007_17_2_a4,
     author = {Hu, S. and Meinke, K. and Chen, R. and Huajiang, O.},
     title = {Iterative estimators of parameters in linear models with partially variant coefficients},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {179--187},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a4/}
}
TY  - JOUR
AU  - Hu, S.
AU  - Meinke, K.
AU  - Chen, R.
AU  - Huajiang, O.
TI  - Iterative estimators of parameters in linear models with partially variant coefficients
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2007
SP  - 179
EP  - 187
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a4/
LA  - en
ID  - IJAMCS_2007_17_2_a4
ER  - 
%0 Journal Article
%A Hu, S.
%A Meinke, K.
%A Chen, R.
%A Huajiang, O.
%T Iterative estimators of parameters in linear models with partially variant coefficients
%J International Journal of Applied Mathematics and Computer Science
%D 2007
%P 179-187
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a4/
%G en
%F IJAMCS_2007_17_2_a4
Hu, S.; Meinke, K.; Chen, R.; Huajiang, O. Iterative estimators of parameters in linear models with partially variant coefficients. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 2, pp. 179-187. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a4/

[1] Brown D.C. (1964): The Error Model Best Estimation Trajectory.- Tech. Rep. AD 602799: http://stinet.dtic.mil/oai/oai?=getRecorg=html=AD0602799

[2] Dodge Y. and Kova J. (2000): Adaptive Regression. - Berlin: Springer.

[3] Draper N.R. and Smith H. (1981): Applied Regression Analysis. - New York: Wiley.

[4] Eubank R., Chunfeng H., Maldonado Y., Naisyin W., Suojin W., Buchanan R.J. (2004): Smoothing spline estimation in varying coefficient models. - J. Roy. Stat. Soc. B, Vol. 66, No. 3, pp. 653-667.

[5] Fahrmeier L. and Tutz G.(2001): Multivariate Statistical Modeling Based on Generalized Linear Models. - Berlin: Springer.

[6] Frank E. and Harrell J.(2002): Regression Modeling Strategies with Applications to Linear Models, Logistic Regression, and Survival Analysis. -New York: Springer.

[7] Graybill F.A. and Iyer H.K. (1994): Regression Analysis: Concepts and Applications. -Massachusetts: Duxbury Press.

[8] Hu Shaolin and Sun Guoji (2001): Process Monitoring Technique and Applications. - Bejing: National Defense Industry Press.

[9] Kala R. and Kłaczyński K. (1988): Recursive improvement of estimates in a Gauss-Markov model with linear restrictions. Canad. J. Stat., Vol. 16, No. 3, pp. 301-305.

[10] Rencher A. (2000): Linear Models in Statistics. - New York: Wiley.