Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2007_17_2_a3, author = {Czornik, A. and Jurga\'s, P.}, title = {Falseness of the finiteness property of the spectral subradius}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {173--178}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a3/} }
TY - JOUR AU - Czornik, A. AU - Jurgaś, P. TI - Falseness of the finiteness property of the spectral subradius JO - International Journal of Applied Mathematics and Computer Science PY - 2007 SP - 173 EP - 178 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a3/ LA - en ID - IJAMCS_2007_17_2_a3 ER -
%0 Journal Article %A Czornik, A. %A Jurgaś, P. %T Falseness of the finiteness property of the spectral subradius %J International Journal of Applied Mathematics and Computer Science %D 2007 %P 173-178 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a3/ %G en %F IJAMCS_2007_17_2_a3
Czornik, A.; Jurgaś, P. Falseness of the finiteness property of the spectral subradius. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 2, pp. 173-178. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a3/
[1] Elsner L. (1995): The generalized spectral radius theorem: An analytic-geometric proof. - Linear Algebra Appl., Vol. 220, pp. 151-159.
[2] Blondel V.D., Theys J. and Vladimirov A.A. (2003): An elementary counterexample to the finitness conjecture. - SIAM J. Matrix Anal. Appl., Vol. 24, No. 4, pp. 963-970.
[3] Czornik A. (2005): On the generalized spectral subradius. - Linear Algebra Appl., Vol. 407, pp. 242-248.
[4] Horn R.A. and Johnson C.R. (1991): Topics in Matrix Analysis. - Cambridge, UK: Cambridge University Press.
[5] Horn R.A. and Johnson C.R. (1985): Matrix Analysis.- Cambridge, UK: Cambridge University Press.
[6] Lagarias J.C. and Wang Y. (1995): The finiteness conjecture for the generalized spectral radius of a set of matrices. - Linear Algebra Appl., Vol. 214, pp. 17-42.
[7] Tsitsiklis J. and Blondel V. (1997): The Lyapunov exponent and joint spectral radius of pairs of matrices are hard - when not impossible to compute and to approximate. - Math. Contr. Signals Syst., Vol. 10, pp. 31-40.