Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2007_17_2_a2, author = {Kaczorek, T.}, title = {Positive partial realization problem for linear discrete-time systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {165--171}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a2/} }
TY - JOUR AU - Kaczorek, T. TI - Positive partial realization problem for linear discrete-time systems JO - International Journal of Applied Mathematics and Computer Science PY - 2007 SP - 165 EP - 171 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a2/ LA - en ID - IJAMCS_2007_17_2_a2 ER -
%0 Journal Article %A Kaczorek, T. %T Positive partial realization problem for linear discrete-time systems %J International Journal of Applied Mathematics and Computer Science %D 2007 %P 165-171 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a2/ %G en %F IJAMCS_2007_17_2_a2
Kaczorek, T. Positive partial realization problem for linear discrete-time systems. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 2, pp. 165-171. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a2/
[1] Benvenuti L. and Farina L. (2004): A tutorial on the positive realization problem. - IEEE Trans. Automat. Contr., Vol. 49, No. 5, pp. 651-664.
[2] Farina L. and Rinaldi S. (2000): Positive Linear Systems: Theory and Applications. -Wiley, New York.
[3] Ho B.L. and Kalman R.E. (1966): Effective construction of linear state-variable models from input/output functions. - Regelungstechnik, Bd. 12, pp. 545-548.
[4] Kaczorek T. (1992): Linear Control Systems, Vol. 1.-Taunton: Research Studies Press.
[5] Kaczorek T. (2002): Positive 1D and 2D Systems. - London: Springer.
[6] Kaczorek T. (2004): Realization problem for positive discretetime systems with delay. - System Sci., Vol. 30, No. 4, pp. 17-30.
[7] Kaczorek T. (2005): Positive minimal realizations for singular discrete-time systems with delays in state and control. - Bull. Pol. Acad. Sci. Techn. Sci., Vol. 53, No. 3, pp. 293-298.
[8] Kaczorek T. (2006a): Realization problem for positive multivariable discrete-time linear systems with delays in the state vector and inputs. - Int. J. Appl. Math. Comput. Sci., Vol. 16, No. 2, pp. 169-174.
[9] Kaczorek T. (2006b) A realization problem for positive continuous-time linear systems with reduced number of delay. - Int. J. Appl. Math. Comput. Sci., Vol. 16, No. 3, pp. 325-331.
[10] Kaczorek T. (2006c): Computation of realizations of discretetime cone-systems. - Bull. Polish Acad. Sci. Techn. Sci., Vol. 54, No. 3, pp. 347-350.
[11] Kaczorek T. (2006d): A realization problem for positive continuous-time systems with reduced numbers of delays.- Int. J. Appl. Math. Comput. Sci., Vol. 16, No. 3, pp. 101-107.
[12] Kaczorek T. (2006e): Minimal positive realization for discretetime systems with state time-delays. - Int. J. Comput. Math. Electr. Eng. COMPEL, Vol. 25, No. 4, pp. 812-826.
[13] Kaczorek T. and Busłowicz M. (2004): Minimal realization problem for positive multivariable linear systems with delay. - Int. J. Appl. Math. Comput. Sci., Vol. 14, No. 2, pp. 181-187.
[14] Merzyakov J.I. (1963): On the existence of positive solutions of a system of linear equations. - Uspekhi Matematicheskikh Nauk, Vol. 18, No. 3, pp. 179-186 (in Russian).