Data probes, vertical trajectories and classification: A tentative study
International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 1, pp. 107-112.

Voir la notice de l'article provenant de la source Library of Science

In this paper we introduce a method of classification based on data probes. Data points are considered as point masses in space and a probe is simply a particle that is launched into the space. As the probe passes by data clusters, its trajectory will be influenced by the point masses. We use this information to help us to find vertical trajectories. These are trajectories in the input space that are mapped onto the same value in the output space and correspond to the data classes.
Keywords: classification, output zeroing, nonlinear control, differential geometry
Mots-clés : klasyfikacja, zerowanie wyjścia, sterowanie nieliniowe, geometria różniczkowa
@article{IJAMCS_2007_17_1_a9,
     author = {Pearson, D. W.},
     title = {Data probes, vertical trajectories and classification: {A} tentative study},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {107--112},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_1_a9/}
}
TY  - JOUR
AU  - Pearson, D. W.
TI  - Data probes, vertical trajectories and classification: A tentative study
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2007
SP  - 107
EP  - 112
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_1_a9/
LA  - en
ID  - IJAMCS_2007_17_1_a9
ER  - 
%0 Journal Article
%A Pearson, D. W.
%T Data probes, vertical trajectories and classification: A tentative study
%J International Journal of Applied Mathematics and Computer Science
%D 2007
%P 107-112
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_1_a9/
%G en
%F IJAMCS_2007_17_1_a9
Pearson, D. W. Data probes, vertical trajectories and classification: A tentative study. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 1, pp. 107-112. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_1_a9/

[1] Benton T.C. and Hand D.J. (2002): Segmentation into predictable classes. - IMA J. Manag. Math., Vol. 13, No. 4, pp. 245-259.

[2] Chiu S.L. (1994): Fuzzy model identification based on cluster estimation.-J. Intell. Fuzzy Syst., Vol. 2, No. 3, pp. 267-278.

[3] Hand D.J., Li H.G. and Adams H.G. (2001): Supervised classification with structured class definitions. - Comput. Stat.Data Anal., Vol. 36, No. 2, pp. 209-225.

[4] Hermann R. (1964): Cartan connections and the equivalence problem for geometric structures. - Contrib. Diff. Eqns., Vol. III, No. 2, pp. 199-248.

[5] Hermann T. and Ritter H. (1999): Listen to your Data: Model-Based Sonification for Data Analysis, In: Advances in Intelligent Computing and Mulimedia Systems, (M.R. Syed, Edi.), International Institute for Advanced Studies in System Research and Cybernetics, pp. 189-194.

[6] Isidori A. (1995): Nonlinear Control Systems 3rd Ed.. - London: Springer.

[7] Pearson D.W.(1996): Approximating vertical vector fields for feedforward neural networks. -Appl. Math. Lett., Vol. 9, No. 2, pp. 61-64.

[8] Pearson D.W. and Batton-Hubert M. (2005): Increasing confidence in atmospheric pollution forecasting via vertical vector fields. - Journal Européen des Systèmes Automatisés, Vol. 39, No. 4, pp. 553-569.