Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2006_16_4_a8, author = {Glentis, G. O. and Georgoulakis, K.}, title = {Pipelined architectures for the frequency domain linear equalizer}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {525--535}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_4_a8/} }
TY - JOUR AU - Glentis, G. O. AU - Georgoulakis, K. TI - Pipelined architectures for the frequency domain linear equalizer JO - International Journal of Applied Mathematics and Computer Science PY - 2006 SP - 525 EP - 535 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_4_a8/ LA - en ID - IJAMCS_2006_16_4_a8 ER -
%0 Journal Article %A Glentis, G. O. %A Georgoulakis, K. %T Pipelined architectures for the frequency domain linear equalizer %J International Journal of Applied Mathematics and Computer Science %D 2006 %P 525-535 %V 16 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_4_a8/ %G en %F IJAMCS_2006_16_4_a8
Glentis, G. O.; Georgoulakis, K. Pipelined architectures for the frequency domain linear equalizer. International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 4, pp. 525-535. http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_4_a8/
[1] Arslan H. and Bottomley G.E. (2001): Channel estimation in narrowband wireless communication systems. - Wireless Comm. Mobile Comput., Vol. 1, No. 2, pp. 201-219.
[2] Azadet K. and Nicole C. (1998): Low-power equalizer architectures for high-speed modems. - IEEE Comm. Mag., Vol. 36, No. 10, pp. 118-126.
[3] Benedetto S. and Biglieri E. (1999): Principles of Digital Transmission: Width: Wireless Applications. - New York: Kluwer.
[4] Benvenuto N. and Tomasin S. (2001): Frequency domain DFE: System design and comparison with OFDM.-Proc. IEEE 8-th Symp. Commun. and Vehic. Tech., SCVT, Benelux, Delft, The Netherlands.
[5] Berberidis K., Rantos S. and Palicot J. (2004): A step-bystep quasi-Newton algorithm in the frequency domain and its application to adaptive channel equalization. - IEEE Trans. Signal Process., Vol. 52, No. 12, pp. 3335-3344.
[6] Bilcu R., Kuosmanen P. and Egiazarian K. (2002): Channel equalization using a new transform domain LMS algorithm with adaptive step-size. - WSEAS Trans. Circ., Vol. 1, No. 1, pp. 113-118.
[7] Bilcu R., Kuosmanen P. and Egiazarian K. (2003): Tracking time-varying channels with adaptive step-size transform domain LMS algorithm, In: Recent Advances in Intelligent Systems and Signal Processing (Mastorakis N. et al., Eds.).- Athens: WSEAS Press, pp. 104-109.
[8] Chen S. and Zhang T. (2005): Self-timed dynamically pipelined adaptive signal processing system: A case study of DLMS equalizer for real channel.-IEEE Trans. Circuits Syst. I, Vol. 52, No. 7, pp. 1338-1347.
[9] Denyer P. and Renshaw D. (1985): VLSI Signal Processing. A bit serial approach. - Boston, MA: Addison-Wesley.
[10] Douglas S.C., Zhu Q. and Smith K. (1998): A pipelined LMS adaptive FIR filter architecture without adaptation delay. - IEEE Trans. Signal Process., Vol. 46, No. 3, pp. 775-779.
[11] Farhang-Boroujeny B., Lee Y. and Ko C.C. (1996): Sliding transforms for efficient implementation of transform domain adaptive filters. - Signal Process., Vol. 52, pp. 83-96.
[12] Glentis G. (2001): Pipelined architectures for the TD LMS adaptive filter.-Proc. IEEE Int. Conf. Acoust. Speech, Signal Proc., ICASSP, Salt Lake City, USA, pp. 1081-1084.
[13] Glentis G. (2005): Pipelined architectures for transform domain LMS adaptive filtering. - J. Circ. Syst. Comput., Vol. 14, No. 3, pp. 553-580.
[14] Glentis G., Berberidis K. and Theodoridis S. (1999): Efficient least squares adaptive algorithms for FIR transversal filtering: A unified view. - IEEE Signal Process. Mag., Vol. 16, No. 4, pp. 13-42.
[15] Hadara A., Nishikawa K. and Kiya H. (1998): Pipelined architecture of the LMS adaptive digital filter with the mimimum output latency. - IEICE Trans. Fundam., Vol. E81-A, No. 8, pp. 1578-1584.
[16] Haykin S. (1996): Adaptive Filter Theory, 3rd Edition. - New Jersey: Prentice Hall.
[17] Huang Y. and Benesty J. (2003): A class of frequency-domain adaptive approaches to blind multichannel identification. - IEEE Trans. Signal Process., Vol. 51, No. 1, pp. 11-24.
[18] Kalouptsidis N. and Theodoridis S. (1993): Adaptive System Identification and Signal Processing Algorithms.-Englewood Cliffs: Prentice Hall.
[19] Kim C.H., Soeleman H. and Oy K. (2003): Ultra-low-power DLMS adaptive filter for hearing aid applications.-IEEE Trans. VLSI Syst., Vol. 11, No. 6, pp. 1058-1067.
[20] Long G., Ling F. and Proakis J. (1989): The LMS algorithm with delayed coefficients adaptation. - IEEE Trans. Acoust. Speech Signal Process., pp. 1397-1405.
[21] Maginot S., Balestro F., Joanblanq C., Senn P. and Palicot J. (1991): A general-purpose high speed equalizer. - IEEE J. Solid State Circ., Vol. 26, pp. 209-215.
[22] Matsubara K., Nishikawa K. and Kiya H. (1999): Pipelined LMS adaptive filter using a new look-ahead transformation. - IEEE Trans. Circuits Syst. II, Vol. 46, No. 1, pp. 61-55.
[23] Moreli M., Sanguinetti L. and Mengali U. (2005): Channel estimation for adaptive frequency domain equalization. - IEEE Trans. Wireless Comm., Vol. 4, No. 5, pp. 2508-2518.
[24] Narayan S., Peterson A.M. and Narasimba M.J. (1983): Transform domain LMS algorithm. - IEEE Trans. Acoust. Speech, Signal Processing, Vol. 31, pp. 609-615.
[25] Quereshi S.U.H. (1985): Adaptive equalization. - Proc. IEEE, Vol. 73, No. 9, pp. 1349-1387.
[26] Parhi K. (1999): VLSI Digital Signal Processing Systems: Design and Implementation. - New York: Wiley.
[27] Picchi G. and Prati G. (1984): Self-orthogonalizing adaptive equalization in the discrete frequency domain. - IEEE Trans. Commun., Vol. 32, No. 4, pp. 371-379.
[28] Pirsch P. (1998): Architectures for Digital Signal Processing. - Chichester: Wiley.
[29] Proakis J. (1995): Digital Communications. 3-rd Ed. - New York: McGraw-Hill.
[30] Ramanathan S. and Visvanathan V. (1999): Low-power pipelined LMS adaptive filter architectures with minimal adaptation delay. - Integration VLSI, Vol. 27, No. 1, pp. 1-32.
[31] Rofougaran A., Chang G., Rael J.J., Chang J. Y.-C., Rofougaran M., Chang P.J., Djafari M., Min J., Roth E.W., Abidi A.A. and Samueli H. (1998): A single chip 900 MHz spread spectrum wireless transceiver in iμm CMOS. Parts I and II. - IEEE J. Solid-State Circuits, Vol. 33, No. 4, pp. 515-547.
[32] Santha K.R. and Vaidehi V. (2004): Design of synchronous and asynchronous architectures for DFT based adaptive equalizer.- Proc. IEEE Conf. SoutheastCon, Greensboro, NC, pp. 383-389.
[33] Shamma M. (2002): Improving the speed and performance of adaptive equalizers via transform based adaptive filtering. - 14-th Int. Conf. Digital Signal Processing, DSP, Santorini-Hellas, Greece, Vol. 2, pp. 1301-1305.
[34] Shanbhag N. and Im G.H. (1998): VLSI systems design of 51.84 Mb/s transceivers for ATM-LAN and broadband access. - IEEE Trans. Signal Process., Vol. 46, Issue 5, pp. 1403-1416.
[35] Shynk J. (1992): Frequency-domain and multirate adaptive filtering. - IEEE Signal Process. Mag., Vol. 9, Issue 1, pp. 14-37.
[36] Son S., Kim J., Lee Y., Kim H. and Park S. (2006): Frequencydomain equalization for distributed terrestrial DTV transmission environments. - IEEE Trans. Consum. Electron., Vol. 52, No. 1, pp. 59-67.
[37] Thomas J. (1996): Pipelined systolic architectures for DLMS adaptive filtering. - J. VLSI Signal Process., Vol. 12, No. 3, pp. 223-246.
[38] Ting L., Woods R. and Cowan C. (2005): Virtex FPGA implementation of a pipelined adaptive LMS predictor for electronic support measures receivers. - IEEE Trans. VLSI Syst., Vo. 13, No. 1, pp. 86-95.
[39] Van L. and Feng W. (2001): An efficient systolic architecture for the DLMS adaptive filter and its applications. - IEEE Trans. Circ. Syst. II, Vol. 48, No. 4, pp. 359-366.
[40] Yang Y., Park C. and Song J. (2004): Fast constant modulus in the DFT domain.-Proc. IEEE Conf. Radio andWireless, RAWCON2004, Atlanta, GA, pp. 19-22.
[41] Yi Y. and Woods R. (2006): Hierarchical synthesis of complex DSP functions using IRIS. - IEEE Trans. Computer. Aided Des. Integr. Circ. Syst., Vol. 25, No. 5, pp. 806-820.