Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2006_16_3_a7, author = {Czekalski, P.}, title = {Evolution-fuzzy rule based system with parameterized consequences}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {373--385}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_3_a7/} }
TY - JOUR AU - Czekalski, P. TI - Evolution-fuzzy rule based system with parameterized consequences JO - International Journal of Applied Mathematics and Computer Science PY - 2006 SP - 373 EP - 385 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_3_a7/ LA - en ID - IJAMCS_2006_16_3_a7 ER -
Czekalski, P. Evolution-fuzzy rule based system with parameterized consequences. International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 3, pp. 373-385. http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_3_a7/
[1] Angelov P. (2002): Evolving Rule-Based Models. A Tool for Design of Flexible Adaptive Systems. - Wurzburg: Physica- Verlag.
[2] Arabas J. (2001): Lectures on Evolutionary Algorithms.-Warsaw: Wydawnictwa Naukowo-Techniczne, (in Polish).
[3] Baron L., Achiche S. and Balazinski M. (2001): Fuzzy decision support system knowledge base generation using a genetic algorithm. -Int. J. Approx. Reason., Vol. 1, No. 28, pp. 125-148.
[4] Bezdek J. (1981): Pattern Recognition with Fuzzy Objective Function Algorithms. -New York: Plenum Press.
[5] Bonarini A. (1996): Evolutionary learning of fuzzy rules: Competition and cooperation, In: Fuzzy Modelling: Paradigms and Practice (W. Pedrycz, Ed.).-Norwell: Kluwer.
[6] Box G. and Jenkins G. (1976): Time Series Analysis. Forecasting and Control.- San Francisco: Holden-Day.
[7] Carse B., Fogarty T.C. and Munro A. (1996): Evolving fuzzy rule based controllers using genetic algorithms. - Fuzzy Sets Syst., Vol. 80, No. 3, pp. 273-294.
[8] Chen J.Q., Xi Y.G. and Zhang Z.J. (1998): A clustering algorithm for fuzzy model identification. - Fuzzy Sets Syst., Vol. 98, No. 3, pp. 319-329.
[9] Cordón O. and Herrera F. (1997a): Identification of linguistic fuzzy models by means of genetic algorithms, In: Fuzzy Model Identification. Selected Approaches (D. Driankow and H. Hellendoorn, Eds.).-Berlin: Springer.
[10] Cordón O. and Herrera F. (1997b): A three-stage evolutionary process for learning descriptive and approximative fuzzy logic controller knowledge bases from examples. - Int. J. Approx. Reason., Vol. 17, No. 4, pp. 369-407.
[11] Cordón O. and Herrera F. (2001): Hybridizing genetic algorithms with sharing scheme and evolution strategies for designing approximate fuzzy rule-based systems.-Fuzzy Sets Syst., Vol. 118, No. 2, pp. 235-255.
[12] Cordón O., Del Jesús M., Herrera F. and Lozano M. (1999): MOGUL: A methodology to obtain genetic fuzzy rulebased systems under the iterative rule learning approach. -Int. J. Intell. Syst., Vol. 14, No. 11, pp. 1123-1153.
[13] Cordón O., Herrera F., Hoffmann F. and Magdalena L. (2001): Genetic Fuzzy Systems: Evolutionary Tuning and Learning of Fuzzy Knowledge Bases. - Singapore: World Scientific.
[14] Cordón O., Gomide F., Herrera F., Hoffmann F. and Magdalena L. (2004): Ten years of genetic fuzzy systems: Current framework and new trends. - Fuzzy Sets Syst., Vol. 141, No. 1, pp. 5-31.
[15] Czogała E. and Łęski J. (1996): A new fuzzy inference system with moving consequent in if-then rules. Application to pattern recognition. - J. Bull. Polish Acad. Sci., Vol. 45, No. 4, pp. 643-655.
[16] Czogała E. and Łęski J. (1999): Fuzzy and Neuro-Fuzzy Intelligent Systems. -Heidelberg: Physica-Verlag.
[17] Fuller R. (1999): Introduction to Neuro-Fuzzy Systems. - Würzburg: Physica-Verlag.
[18] González A. and Pérez R. (1999): SLAVE: A genetic learning system based on an iterative approach. - IEEE Trans. Fuzzy Syst., Vol. 7, No. 2, pp. 176-191.
[19] Herrera F. and Verdegay J. (1996): Genetic Algorithms and Soft Computing. - Wurzburg: Physica-Verlag.
[20] Herrera F., Lozano M. and Verdegay J.L. (1995): Tuning fuzzy logic controllers by genetic algorithms. - Int. J. Approx. Reason., Vol. 12, No. 3, pp. 299-315.
[21] Hoffmann F. and Pfister G. (1997): Evolutionary design of a fuzzy knowledge base for a mobile robot.-Int. J. Approx. Reason., Vol. 17, No. 4, pp. 447-469.
[22] Holland J. (1975): Adaptation in Natural and Artificial Systems. - University of Michigan Press, Ann Arbor.
[23] Holland J. and Reitman J. (1978): Cognitive systems based on adaptive algorithms, In: Pattern-Directed Inference Systems (D.A. Waterman and F. Hayes-Roth, Eds.). - New York: Academic Press.
[24] Ishibuchi H., Nakashima T. and Murata T. (1999): Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems. - IEEE Trans. Syst. Man Cybern., Vol. 29, No. 5, pp. 601-618.
[25] Kim E., Park M. and Ji S. (1997): A new approach to fuzzy modeling. - IEEE Trans. Fuzzy Syst., Vol. 5, No. 3, pp. 328- 337.
[26] Lee M.A. and Takagi H. (1993): Integrating design stages of fuzzy systems using genetic algorithms. -Proc. 2nd IEEE Int. Conf. Fuzzy Systems, San Francisco, CA, pp. 613-617.
[27] Łęski J. (2005): TSK-fuzzy modeling based on ε-insensitive learning. - IEEE Trans. Fuzzy Syst. Vol. 13, No. 2, pp. 181-193.
[28] Łęski J. (2006): Neuro-Fuzzy Systems. - Warsaw: Wydawnictwa Naukowo-Techniczne, (in Polish).
[29] Łęski J. and Czogała E. (1999): A new artifficial neural network based fuzzy inference system with moving consequents in if-then rules and selected applications.-Fuzzy Sets Syst., Vol. 108, No. 3, pp. 289-297.
[30] Lin Y. and Cunningham H. (1995): A new approach to fuzzyneural modeling. - IEEE Trans. Fuzzy Syst., Vol. 3, No. 2, pp. 190-197.
[31] Magdalena L. and Monasterio F. (1997): A Fuzzy logic controller with learning through the evolution of its knowledge base. - Int. J. Approx. Reason., Vol. 16, Nos. 3-4, pp. 335-358.
[32] Mamdani E. and Assilian S. (1975): An experiment in linguistic synthesis with a fuzzy logic controller.-Int. J. Man-Mach.Stud., Vol. 7, No. 1, pp. 1-13.
[33] Michalewicz Z. (2003): Genetic Algorithms + Data Structures = Evolution Programs. - Warsaw: Wydawnictwa Naukowo-Techniczne, (in Polish).
[34] Park D., Kandel A. and Langholz G. (1994): Genetic-based new fuzzy reasoning models with application to fuzzy control. - IEEE Trans. Syst. Man Cybern., Vol. 24, No. 1, pp. 39-47.
[35] Parodi A. and Bonelli P. (1993): A new approach to fuzzy classifier systems.-Proc. 5-th Int. Conf. Genetic Algorithms, Los Altos, pp. 223-230.
[36] Pedrycz W. (1984): An identification algorithm in fuzzy relational systems. - Fuzzy Sets Syst., Vol. 13, No. 2, pp. 153-167.
[37] Pedrycz W. (1997): Fuzzy Evolutionary Computation. - Dordrecht: Kluwer.
[38] Pham D. and Karaboga D. (1991): Optimum design of fuzzy logic controllers using genetic algorithms.-J. Syst. Eng., Vol. 1, No. 2, pp. 114-118.
[39] Sugeno M. and Kang G. (1988): Structure identification of fuzzy model. -Fuzzy Sets Syst., Vol. 28, No. 1, pp. 15-33.
[40] Sugeno M. and Yasukawa T. (1993): A fuzzy-logic based approach to qualitative modeling. - IEEE Trans. Fuzzy Syst., Vol. 1, No. 1, pp. 7-31.
[41] Tadeusiewicz R. (1998): Fundamental introduction to neural neworks techniques with sample implementations. -Warsaw: Akademicka Oficyna Wydawnicza PLJ, (in Polish).
[42] Takagi T. and Sugeno M. (1985): Fuzzy identification of systems and its application to modelling and control.-IEEE Trans. Syst. Man Cybern., Vol. 15, No. 1, pp. 116-132.
[43] Thrift P. (1991): Fuzzy logic synthesis with genetic algorithms. - Proc. 4-th Int. Conf. Genetic Algorithms, Los Altos, pp. 509-513.
[44] Tong R. (1980): The evaluation of fuzzy models derived from experimental data. - Fuzzy Sets Syst., Vol. 4, pp. 1-12.
[45] Valenzuela-Rendón M. (1991): The fuzzy classifier system: Motivations and first results. - Proc. 1-st Int. Conf. Parallel Problem Solving from Nature, Berlin, pp. 330-334.
[46] Velasco J. (1998): Genetic-based on-line learning for fuzzy process control. - Int. J. Intell. Syst., Vol. 13, Nos. 10- 11, pp. 891-903.
[47] Wang L. and Langari R. (1995): Building Sugeno-type models using fuzzy discretization and orthogonal parameter estimation techniques. - IEEE Trans. Fuzzy Syst., Vol. 3, No. 4, pp. 454-458.
[48] Weigend A., Huberman B. and Rumelhart D. (1990): Predicting the future: A connectionist approach. - Int. J. Neural Syst., Vol. 1, No. 3, pp. 193-209.
[49] Xu C. and Lu Y. (1987): Fuzzy modeling identification and selflearining for dynamic systems. - IEEE Trans. Syst. Man Cybern., Vol. 17, No. 4, pp. 683-689.
[50] Zadeh L. (1971): Towards a theory of fuzzy systems, In: Aspects of Network and System Theory (R.E. Kalman and N. De Claris, Eds.).-New York: Holt, Rinehart and Winston.
[51] Zikidis K. and Vasilakos A. (1996): ASAFES2: A novel, neurofuzzy architecture for fuzzy computing, based on functionalreasoning. - Fuzzy Sets Syst., Vol. 83, No. 1, pp. 63-68.