A robust controller design method and stability analysis of an underactuated underwater vehicle
International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 3, pp. 345-356.

Voir la notice de l'article provenant de la source Library of Science

The problem of designing a stabilizing feedback controller for an underactuated system is a challenging one since a nonlinear system is not stabilizable by a smooth static state feedback law. A necessary condition for the asymptotical stabilization of an underactuated vehicle to a single equilibrium is that its gravitational field has nonzero elements corresponding to unactuated dynamics. However, global asymptotical stability (GAS) cannot be guaranteed. In this paper, a robust proportional-integralderivative (PID) controller on actuated dynamics is proposed and unactuated dynamics are shown to be global exponentially bounded by the Sordalen lemma. This gives a necessary and sufficient condition to guarantee the global asymptotic stability (GAS) of the URV system. The proposed method is first adopted on a remotely-operated vehicle RRC ROV II designed by the Robotic Research Centre in the Nanyang Technological University (NTU). Through the simulation using the ROV Design and Analysis toolbox (RDA) written at the NTU in the MATLAB/SIMULINK environment, the RRC ROV II is robust against parameter perturbations.
Keywords: underwater vehicle, underactuated, stabilizable, robust controller, simulation
Mots-clés : pojazd podwodny, stabilność, sterowanie odporne, symulacja
@article{IJAMCS_2006_16_3_a5,
     author = {Chin, C. S. and Lau, M. W. S. and Low, E. and Seet, G. G. L.},
     title = {A robust controller design method and stability analysis of an underactuated underwater vehicle},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {345--356},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_3_a5/}
}
TY  - JOUR
AU  - Chin, C. S.
AU  - Lau, M. W. S.
AU  - Low, E.
AU  - Seet, G. G. L.
TI  - A robust controller design method and stability analysis of an underactuated underwater vehicle
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2006
SP  - 345
EP  - 356
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_3_a5/
LA  - en
ID  - IJAMCS_2006_16_3_a5
ER  - 
%0 Journal Article
%A Chin, C. S.
%A Lau, M. W. S.
%A Low, E.
%A Seet, G. G. L.
%T A robust controller design method and stability analysis of an underactuated underwater vehicle
%J International Journal of Applied Mathematics and Computer Science
%D 2006
%P 345-356
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_3_a5/
%G en
%F IJAMCS_2006_16_3_a5
Chin, C. S.; Lau, M. W. S.; Low, E.; Seet, G. G. L. A robust controller design method and stability analysis of an underactuated underwater vehicle. International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 3, pp. 345-356. http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_3_a5/

[1] Brockett R.W. (1983): Asymptotic stability and feedback stabilization, In: Differential Geometric Control Theory (R.W. Brockett, R.S. Millman and H.J. Sussmann, Eds.). - Boston: Birkhäuser, pp. 181-191.

[2] Byrnes C. and Isidori A. (1991): On the attitude stabilization of rigid spacecraft.-Automatica, Vol. 27, No. 1, pp. 87-95.

[3] Fossen T.I. (1994): Guidance and Control of Ocean Vehicles. - New York: Wiley.

[4] Koh T.H., Lau M.W.S., Low E., Seet G.G.L. and Cheng P.L. (2002a): Preliminary studies of the modeling and control of a twin-barrel underactuated underwater robotic vehicle. -Proc. 7-th Int. Conf. Control, Automation, Robotics Vision, Singapore, pp. 1043-1047.

[5] Koh T.H., Lau M.W.S., Low E., Seet G., Swei S. and Cheng P.L. (2002b): Development and improvement of an underactuated remotely operated vehicle (ROV) . - Proc. MTS/IEEE Int. Conf. Oceans, Biloxi, MS, pp. 2039-2044.

[6] Kreyszig E. (1998): Advanced Engineering Mathematics. - New York: Wiley.

[7] Lau M.W.S., Swei S.S.M., Seet S.S.M., Low E. and Cheng P.L. (2003): Control of an underactuated remotely operated underwater vehicle.-Proc. Inst. Mech. Eng., Part 1: J. Syst. Contr., Vol. 217, No. 1, pp. 343-358.

[8] Søodalen O.J. and Egeland O. (1993): Exponential stabilization of chained nonholonomic systems.-Proc. 2-nd European Control Conf., Groningen, The Netherlands, pp. 1438- 1443.

[9] Sødalen O.J. and Egeland O. (1995): Exponential stabilization of nonholonomic chained systems. - IEEE Trans. Automat. Contr., Vol. 40, No. 1, pp. 35-49.

[10] Sørdalen O.J., Dalsmo M. and Egeland O. (1993): An exponentially convergent control law for a nonholonomic underwater vehicle. - Proc. 3-rd Conf. Robotics and Automation, ICRA, Atlanta, Georgia, USA, pp. 790-795.

[11] Wichlund K.Y., Sørdalen O.J. and Egeland O. (1995): Control of vehicles with second-order nonholonomic constraints: Underactuated vehicles. -Proc. European Control Conf., Rome, Italy, pp. 3086-3091.

[12] Yuh J. (1990): Modeling and control of underwater robotic vehicles. - IEEE Trans. Syst. Man Cybern., Vol. 20, No. 6, pp. 1475-1483.