Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2006_16_3_a2, author = {Petersen, I. R.}, title = {Minimax {LQG} control}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {309--323}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_3_a2/} }
Petersen, I. R. Minimax LQG control. International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 3, pp. 309-323. http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_3_a2/
[1] Boel R.K., James M.R. and Petersen I.R. (2002): Robustness and risk sensitive filtering. - IEEE Trans. Automat. Contr., Vol. 47, No. 3, pp. 451-461.
[2] Collings I.B., James M.R. and Moore J.B. (1996): An information-state approach to risk-sensitive tracking problems. - J. Math. Syst. Estim. Contr., Vol. 6, No. 3, pp. 1-24.
[3] Dai Pra P., Meneghini L. and Runggaldier W.J. (1996): Connections between stochastic control and dynamic games. - Math. Contr. Syst. Signals, Vol. 9, No. 2, pp. 303-326.
[4] Doyle J., Packard A. and Zhou K. (1991): Review of LFT's, LMI's and μ.-Proc. 30-th IEEE Conf. Decision on Control, Brighton, England, pp. 1227-1232.
[5] Dupuis P. and Ellis R. (1997): A Weak Convergence Approach to the Theory of Large Deviations. - New York: Wiley.
[6] Dupuis P., James M.R. and Petersen I.R. (2000): Robust properties of risk-sensitive control.-Math. Contr. Signals, Syst., Vol. 13, No. 4, pp. 318-332.
[7] Horowitz I. (1963): Synthesis of Feedback Systems. - New York: Academic Press.
[8] Jacobson D.H. (1973): Optimal stochastic linear systems with exponential performance criteria and their relation to deterministic differential games. - IEEE Trans. Automat. Contr., Vol. 18, No. 2, pp. 124-131.
[9] Luenberger D.G. (1969): Optimization by Vector Space Methods. -New York: Wiley.
[10] Moheimani S.O.R., Savkin A.V. and Petersen I.R. (1997): Minimax optimal control of discrete-time uncertain systems with structured uncertainty. - Dynam. Contr., Vol. 7, No. 1, pp. 5-24.
[11] Petersen I.R. and James M.R. (1996): Performance analysis and controller synthesis for nonlinear systems with stochastic uncertainty constraints. - Automatica, Vol. 32, No. 7, pp. 959-972.
[12] Petersen I.R., James M.R. and Dupuis P. (2000a): Minimax optimal control of stochastic uncertain systems with relative entropy constraints.-IEEE Trans. Automat. Contr., Vol. 45, No. 3, pp. 398-412.
[13] Petersen I.R., Ugrinovski V. and Savkin A.V. (2000b): Robust Control Design using H ∞ Methods. - London: Springer.
[14] Savkin A.V. and Petersen I.R. (1995): Minimax optimal control of uncertain systems with structured uncertainty. - Int. J. Robust Nonlin. Contr., Vol. 5, No. 2, pp. 119-137.
[15] Savkin A.V. and Petersen I.R. (1996): Uncertainty averaging approach to output feedback optimal guaranteed cost control of uncertain systems.-J. Optim. Th. Applic., Vol. 88, No. 2, pp. 321-337.
[16] Savkin A.V. and Petersen I.R. (1997): Output feedback guaranteed cost control of uncertain systems on an infinite time interval. - Int. J. Robust Nonlin. Contr., Vol. 7, No. 1, pp. 43-58.
[17] Ugrinovskii V.A. and Petersen I.R. (1997): Infinite-horizon minimax optimal control of stochastic partially observed uncertain systems. - Proc. Control 97 Conference, Sydney, Australia, pp. 616-621.
[18] Ugrinovskii V.A. and Petersen I.R. (1999a): Finite horizon minimax optimal control of stochastic partially observed time varying uncertain systems. - Math. Contr., Signals Syst., Vol. 12, No. 1, pp. 1-23.
[19] Ugrinovskii V.A. and Petersen I.R. (1999b): Guaranteed cost LQG filtering for stochastic discrete time uncertain systems via risk-sensitive control. - Proc. IEEE Conf. Decision and Control, Phoenix, AZ, pp. 564-569.
[20] Ugrinovskii V.A. and Petersen I.R. (2001a): Minimax LQG control of stochastic partially observed uncertain systems. - SIAM J. Contr. Optim., Vol. 40, No. 4, pp. 1189-1226.
[21] Ugrinovskii V.A. and Petersen I.R. (2001b): Robust stability and performance of stochastic uncertain systems on an infinite time interval.-Syst. Contr. Lett., Vol. 44, No. 4, pp. 291-308.
[22] Ugrinovskii V.A. and Petersen I.R. (2002a): Robust output feedback stabilization via risk-sensitive control. - Automatica, Vol. 38, No. 6, pp. 945-955.
[23] Ugrinovskii V. and Petersen I.R. (2002b): Robust filtering of stochastic uncertain systems on an infinite time horizon. - Int. J. Contr., Vol. 75, No. 8, pp. 614-626.
[24] Whittle P. (1981): Risk-sensitive linear/quadratic/Gaussian control.- Adv. Appl. Prob., Vol. 13, No. 4, pp. 764-777.
[25] Xie L., Ugrinovski V.A. and Petersen I.R. (2004a): Finite horizon robust state estimation for uncertain finite-alphabet hidden markov models with conditional relative entropy constraints. - Proc. 43-rd IEEE Conf. Decision and Control, Atlantis, Paradise Island, Bahamas, (on CD-ROM).
[26] Xie L., Ugrinovski V.A. and Petersen I.R. (2004b): Probability distances between finite-alphabet hidden markov models. - Proc. 2-nd IFAC Symp. System, Structure and Control, Oaxaca, Mexico, (on CD-ROM).
[27] Xie L., Ugrinovskii V.A. and Petersen I.R. (2005a): Probabilistic distances between finite-state finite-alphabet hidden Markov models. - IEEE Trans. Automat. Contr., Vol. 50, No. 4, pp. 505-511.
[28] Xie L., Ugrinovskii V.A. and Petersen I.R. (2005b): A duality relationship for regular conditional relative entropy.-Proc. 16-th IFAC World Congress, Prague, Czech Republic, (on CD-ROM).
[29] Yoon M. and Ugrinovskii V. (2003): Robust tracking problem for continuous time stochastic uncertain systems. - Proc. 42-nd IEEE Conf. Decision and Control, Hawaii, pp. 282-287.
[30] Yoon M.G., Ugrinovskii V.A. and Petersen I.R. (2004): Robust finite horizon minimax filtering for stochastic discrete time uncertain systems. - Syst. Contr. Lett., Vol. 52, No. 2, pp. 99-112.
[31] Yoon M.G., Ugrinovskii V.A. and Petersen I.R. (2005): On the worst disturbance of minimax optimal control. - Automatica, Vol. 41, No. 5, pp. 847-855.