A variable structure observer for the control of robot manipulators
International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 2, pp. 189-196.

Voir la notice de l'article provenant de la source Library of Science

This paper deals with the application of a variable structure observer developed for a class of nonlinear systems to solve the trajectory tracking problem for rigid robot manipulators. The analyzed approach to observer design proposes a simple design methodology for systems having completely observable linear parts and bounded nonlinearities and/or uncertainties. This observer is basically the conventional Luenberger observer with an additional switching term that is used to guarantee robustness against modeling errors and system uncertainties. To solve the tracking problem, we use a control law developed for robot manipulators in the full information case. The closed loop system is shown to be globally asymptotically stable based on Lyapunov arguments. Simulation results on a 3-DOF robot manipulator show the asymptotic convergence of the vectors of observation and tracking errors.
Keywords: variable structure observers, switching-type observers, rigid robot manipulators, exponential stability, tracking control
Mots-clés : obserwator, manipulator robotyczny, stateczność wykładnicza, system naprowadzający
@article{IJAMCS_2006_16_2_a3,
     author = {Abdessameud, A. and Khelfi, M. F.},
     title = {A variable structure observer for the control of robot manipulators},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {189--196},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_2_a3/}
}
TY  - JOUR
AU  - Abdessameud, A.
AU  - Khelfi, M. F.
TI  - A variable structure observer for the control of robot manipulators
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2006
SP  - 189
EP  - 196
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_2_a3/
LA  - en
ID  - IJAMCS_2006_16_2_a3
ER  - 
%0 Journal Article
%A Abdessameud, A.
%A Khelfi, M. F.
%T A variable structure observer for the control of robot manipulators
%J International Journal of Applied Mathematics and Computer Science
%D 2006
%P 189-196
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_2_a3/
%G en
%F IJAMCS_2006_16_2_a3
Abdessameud, A.; Khelfi, M. F. A variable structure observer for the control of robot manipulators. International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 2, pp. 189-196. http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_2_a3/

[1] Abdessameud A. and Khelfi M.F. (2003): Nonlinear observer design for robot manipulators: A survey. - Proc. 7-th IFAC Symp. Robot Control, SYROCO'03, Wrocław, Poland, pp. 247-252.

[2] Abdessameud A. and Khelfi M.F. (2005): A variable structure observer for robot manipulators control. - Proc. 11- th IEEE International Conf. Methods and Models in Automation and Robotics, MMAR'05, Mi˛edzyzdroje, Poland, pp. 609-614.

[3] Baumann W.T. and Rogh W.J. (1986): Feedback control of nonlinear systems by extended linearization. - IEEE Trans. Automat. Contr., Vol. Ac-31, No. 1, pp. 40-46.

[4] Berghuis H. (1993a): Model Based Control: From Theory to Practice. - Ph.D. thesis, University of Twente, the Netherlands.

[5] Berghuis H. and Nijmeijer H. (1993b): Global regulation of robots using only position measurement. - Syst. Contr. Lett., Vol. 21, pp. 289-293.

[6] Bornard G. and Hammouri H. (1991): A high-gain observer for a class of uniformly observable systems.-Proc. 30-th Conf. Decision and Control, Brighton, England, pp. 1494-1496.

[7] Canudas de wit C., Aström K.J. and Fixot N. (1990): Computed torque control via a nonlinear observer. - Int. J. Adap. Contr. Signal Process., Vol. 4, pp. 443-452.

[8] Canudas de wit C. and Slotine J.J.E. (1991a): Sliding observers for robot manipulators. - Automatica, Vol. 27, No. 5, pp. 859-864.

[9] Canudas de wit C. and Fixot N. (1991b): Robot control via robust estimated state feedback. - IEEE Trans. Automat. Contr., Vol. AC-36, No. 12, pp. 1497-1501.

[10] Canudas de wit C., Fixot N. and Aström K.J. (1992): Trajectory tracking in robot manipulators via nonlinear estimated state feedback. - IEEE Trans. Robot. Automat., Vol. 8, No. 1, pp. 138-144.

[11] Dawson D.M., Qu Z. and Caroll J.C. (1992): On the observation and output feedback problems for nonlinear uncertain dynamic systems.-Syst. Contr. Lett., Vol. 18, pp. 217-222.

[12] Gauthier J.P. and Bornard G. (1981): Observability of any u(t) of a class of nonlinear system. - IEEE Trans. Automat. Contr., Vol. AC-26, No. 4, pp. 922-926.

[13] Gauthier J.P., Hammouri H. and Othman S. (1991): A simple observer for nonlinear system: Applications to bioreactors. - IEEE Trans. Automat. Contr., Vol. 37, No. 6, pp. 875- 880.

[14] Hammami M.A. (1993): Stabilization of a class of nonlinear systems using an observer design. - Proc. 32-nd IEEE Conf. Decision and Control, San Antonio, Texas, Vol. 3, pp. 1954-1959.

[15] Khelfi M.F., Zasadzinski M., Rafaralahi H. and Darouach M. (1996): Reduced order observer-based point-to-point and trajectory controllers for robot manipulators. - Contr. Eng. Pract., Vol. 4, No. 7, pp. 991-1000.

[16] Khelfi M.F., Zasadzinski M., Benzine A., Belalem G. And Beldjilali B. (1998): Nonlinear observation theory. - Proc. IEEE, SMC, IMACS Multiconf. Computational Engineering in Systems Applications CESA'98, Nabeul- Hammamet, Tunisia, pp. 260-265.

[17] Krener A.J. and Respondek W. (1985): Nonlinear observers with linearized error dynamics. -SIAM J. Contr. Optim., Vol. 23, No. 2, pp. 197-216.

[18] Lawrence D.A. (1992): On a nonlinear observer with pseudolinearized error dynamics. - Proc. 31-st IEEE Conf. Decision and Control, Tucson, USA, pp. 751-756.

[19] Misawa E.A. and Hedrick J.K. (1989): Nonlinear observers-A State of the Art Survey. - Trans. ASME J. Dynam. Syst., Vol. 111, No. 3, pp. 344-352.

[20] Nicosia S. and Tomei P. (1990): Robot control by using only joint position measurements. - IEEE Trans. Automat. Contr., Vol. 35, No. 9, pp. 1058-1061.

[21] Paden B. and Panja R. (1988): Globally asymptotically stable 'PD +' controller for robot manipulators. -Int. J. Contr., Vol. 47, No. 6, pp. 1697-1712.

[22] Slotine J.J.E., Hedrick J.K. and Misawa E.A. (1986): On sliding observers for nonlinear systems. - Proc. American Control Conf., Seattle, USA, pp. 1794-1800.

[23] Slotine J.J.E., Hedrick J.K. and Misawa E.A. (1987): On sliding observers for nonlinear systems. - Trans. ASME J. Dynam. Syst. Meas. Contr., Vol. 109, No. 3, pp. 245-252.

[24] Tsinias J. (1989): Observer design for non-linear systems. - Syst. Contr. Lett., Vol. 13, pp. 135-142.

[25] Walcott B.L. and ˙ Zak S.H. (1987a): State observation of nonlinear uncertain dynamical systems.-IEEE Trans. Automat. Contr., Vol. AC-32, No. 2, pp. 166-170.

[26] Walcott B.L., Corless M.J. and ˙ Zak S.H. (1987b): Comparative study of the nonlinear state-observation techniques.-Int. J. Contr., Vol. 45, No. 6, pp. 2109-2132.

[27] Yoshikawa T. (1990): Foundation of Robotics: Analysis and Control. -Cambridge, Massachusetts, MIT Press.